Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Folia Primatol (Basel) ; 92(5-6): 276-283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161944

RESUMO

Timing of craniofacial suture fusion is important for the determination of demographics and primate ontogeny. There has been much work concerning the timing of fusion of calvarial sutures over the last century, but little comprehensive work focusing on facial sutures. Here we assess the relationships of facial suture fusion across ontogeny among select catarrhines. Fusion timing patterns for 5 facial sutures were examined in 1,599 crania of Homo, Pan, Gorilla, Pongo, Hylobatidae, Papio, and Macaca. Calvarial volume (early ontogeny) and dental eruption (late ontogeny) were used as indicators of stage of development. General linear models, test for homogeneity of slopes, and ANOVA were used to determine differences in timing of fusion by taxon. For calvarial volume, taxonomic groups segregated by regression slopes, with models for Homo indicating sutural fusion throughout ontogeny, Pongo, Macaca, and Papio representing earlier and more complete suture fusion, and Pan, Gorilla, and Hylobatidae indicating very early facial suture fusion. Similar patterns are observed when dental eruption is used for developmental staging. Only Gorilla and Hylobatidae are observed to, generally, fuse all facial suture sites in adulthood. Finally, Homo appears to be unique in its delay and patency of sutures into late ontogeny. The taxonomic patterns of facial suture closure identified in this study likely reflect important evolutionary shifts in facial growth and development in catarrhines.


Assuntos
Suturas Cranianas , Hominidae , Crânio , Animais , Hominidae/anatomia & histologia , Crânio/anatomia & histologia
2.
Am J Primatol ; 82(9): e23175, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32696564

RESUMO

Although hylobatids are the most speciose of the living apes, their morphological interspecies and intraspecies variation remains poorly understood. Here, we assess mandibular shape variation in two species of Hylobates, white-handed (Hylobates lar) and black-handed (Hylobates agilis) gibbons. Using 71 three-dimensional landmarks to quantify mandibular shape, interspecies and intraspecies variation and geographic patterns of mandibular shape are examined in a mixed sex sample of adult H. lar and H. agilis through generalized Procrustes analysis, Procrustes analysis of variance, and principal components analysis. We find that relative to H. agilis, H. lar exhibits a higher amount of variation in mandibular shape. Both species demonstrate similar allometric patterns in mandibular shape. We also highlight a geographic pattern in mandibular shape variation. Compared to mainland hylobatids, insular hylobatids have relatively lower, more posteriorly oriented, and anteroposteriorly wider mandibular condyles, with an increased distance between the condyles and the coronoid processes. This geographic pattern could reflect differences in functional demands on the mandible during mastication and/or could be driven by factors often associated with evolutionary pressures of island populations relative to mainland populations. The findings of this study highlight how little is known about Hylobates morphological variation and how important this is for using Hylobates to help interpret the primate fossil record. Understanding interspecific and intraspecific variation in extant primates is vital to interpreting variation in the primate fossil record.


Assuntos
Hylobates/anatomia & histologia , Mandíbula/anatomia & histologia , Animais , Feminino , Hylobates/classificação , Ilhas , Masculino , Caracteres Sexuais , Especificidade da Espécie
3.
Am J Phys Anthropol ; 168(2): 318-328, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30537105

RESUMO

OBJECTIVES: Mandibular corpus robusticity (corpus breadth/corpus height) is the most commonly utilized descriptor of the mandibular corpus in the great ape and hominin fossil records. As a consequence of its contoured shape, linear metrics used to characterize mandibular robusticity are inadequate to quantify the shape of the mandibular corpus. Here, we present an alternative to the traditional assessment of mandibular shape by analyzing the outline of the mandibular corpus in cross-section using landmarks and semilandmarks. MATERIALS AND METHODS: Outlines of the mandibular corpus in cross-section between M1 and M2 were quantified in a sample of hominoids and analyzed using generalized Procrustes analysis, Procrustes ANOVA, CVA, and cluster analysis. Corpus breadth and width were also collected from the same sample and analyzed using regression, ANOVA, and cluster analysis. RESULTS: Analysis of corpus outline shape revealed significant differences in mandibular corpus shape that are independent of size and sex at the genus level across hominoids. Cluster analysis based on the analysis of corpus outline shape results in almost all specimens grouping based on taxonomic affinity (99.28% correct classification). Comparison of these results to results using traditional measures of mandibular robusticity shows that analysis of the outline of the corpus in cross-section discriminate extant great apes more reliably. CONCLUSION: The strong taxonomic signal revealed by this analysis indicates that quantification of the outline of the mandibular corpus more fully captures mandibular corpus shape and offers the potential for greater power in discriminating among taxa in the hominoid fossil record.


Assuntos
Cefalometria/métodos , Hominidae/anatomia & histologia , Mandíbula/anatomia & histologia , Animais , Antropologia Física , Feminino , Fósseis , Masculino , Mandíbula/diagnóstico por imagem , Tomografia Computadorizada por Raios X
4.
Front Genet ; 13: 871927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651944

RESUMO

The Fgfr2c C342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel's cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2c C342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c +/+ ). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2c C342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2c C342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2c C342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2c C342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA