Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 59(4): 2215-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645853

RESUMO

To be efficient, vaginal microbicide hydrogels should form a barrier against viral infections and prevent virus spreading through mucus. Multiple particle tracking was used to quantify the mobility of 170-nm fluorescently labeled COOH-modified polystyrene particles (COOH-PS) into thermosensitive hydrogels composed of amphiphilic triblock copolymers with block compositions EOn-POm-EOn (where EO refers to ethylene oxide and PO to propylene oxide) containing mucoadhesive hydroxypropylmethylcellulose (HPMC). COOH-PS were used to mimic the size and the surface charge of HIV-1. Analysis of COOH-PS trajectories showed that particle mobility was decreased by Pluronic hydrogels in comparison with cynomolgus macaque cervicovaginal mucus and hydroxyethylcellulose hydrogel (HEC; 1.5% by weight [wt%]) used as negative controls. Formulation of the peptide mini-CD4 M48U1 used as an anti-HIV-1 molecule into a mixture of Pluronic F127 (20 wt%) and HPMC (1 wt%) did not affect its anti-HIV-1 activity in comparison with HEC hydrogel. The 50% inhibitory concentration (IC50) was 0.53 µg/ml (0.17 µM) for M48U1-HEC and 0.58 µg/ml (0.19 µM) for M48U1-F127-HPMC. The present work suggests that hydrogels composed of F127-HPMC (20/1 wt%, respectively) can be used to create an efficient barrier against particle diffusion in comparison to conventional HEC hydrogels.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Antígenos CD4/química , Antígenos CD4/farmacologia , Muco do Colo Uterino/efeitos dos fármacos , Muco do Colo Uterino/virologia , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Poloxâmero/química , Polietilenoglicóis/química , Propilenoglicóis/química , Animais , Difusão , Feminino , Corantes Fluorescentes , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Hidrogéis/síntese química , Derivados da Hipromelose/síntese química , Macaca fascicularis , Poloxâmero/farmacologia , Polietilenoglicóis/farmacologia , Propilenoglicóis/farmacologia , Reologia , Viscosidade
2.
Curr Biol ; 26(24): 3399-3406, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27916523

RESUMO

Microtubule dynamics rely on the properties of tubulin and are regulated by microtubule-associated proteins. GTP-tubulin assembles into hollow polymers, which can depolymerize upon GTP hydrolysis. Depolymerizing microtubules may stop shrinking and resume growth. Such rescues are regulated by microtubule-associated proteins like CLIP-170 and the CLASPs [1, 2]. Microtubule domains prone to rescues contain discrete regions (previously termed "GTP islands") that retain a GTP-tubulin-like conformation in the main body of the microtubule [3]. However, the exact nature of these domains and the mechanisms controlling their occurrence and distribution are largely unknown. Here we show that collisions between growing microtubules and mechanical obstacles (including other microtubules) in vitro result in the higher abundance of GTP-like islands in stressed microtubule regions. Furthermore, these islands were found to be efficiently generated by both lateral contacts and mechanical constraints applied to the main body of the microtubules. They were also particularly prominent where shifts in the number of protofilaments occur in the microtubule lattice. GTP-like islands and rescues frequently co-occurred at microtubule intersections in vitro and in living cells, both in crossing and in crossed microtubules. We also observed that CLIP-170 recognizes GTP-like islands in vivo and is retained at microtubule crossings. Therefore, we propose that rescues occur via a two-stage mechanism: (1) lattice defects determine potential rescue-promoting islands in the microtubule structure, and (2) CLIP-170 detects these islands to stimulate microtubule rescue. Our results reveal the interplay between rescue-promoting factors and microtubule architecture and organization to control microtubule dynamics.


Assuntos
Microtúbulos/fisiologia , Animais , Linhagem Celular , Guanosina Trifosfato , Simulação de Dinâmica Molecular , Polímeros , Conformação Proteica
3.
J Biol Chem ; 280(2): 1123-31, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15528207

RESUMO

In the last decade, the notion that microtubules are critical to the spatial organization of signal transduction and contribute to the transmission of signals to downstream targets has been proposed. Because the STAT5B transduction and transcription factor is the major STAT protein activated by growth hormone stimulation in hepatocytes and is a crossroads between many signaling pathways, we studied the involvement of microtubules in STAT5B-mediated growth hormone signaling pathway in the highly differentiated and polarized WIF-B hepatic cell line. We showed that depolymerization of the microtubule network impaired STAT5B translocation to the nucleus upon growth hormone treatment. A significant amount of STAT5B binds to microtubules, while STAT5A and STAT3 are exclusively compartmentalized in the cytosol. Moreover, taxol-induced stabilization of microtubules released STAT5B from its binding, and we show that STAT5B binds specifically to the highly dynamic microtubules and is absent of the stable microtubule subpopulation. The specific involvement of dynamic microtubule subpopulation in growth hormone signaling pathway was confirmed by the inhibition of growth hormone-induced STAT5B nuclear translocation after stabilization of microtubules or specific disruption of highly dynamic microtubules. Upon growth hormone treatment, MT-bound STAT5B was rapidly released from microtubules by a dynein-dependent transport to the nucleus. Altogether, our findings indicate that the labile microtubule subpopulation specifically and dynamically organizes STAT5B-mediated growth hormone signaling in hepatic cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hormônio do Crescimento/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Microtúbulos/metabolismo , Proteínas do Leite/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Biopolímeros/metabolismo , Linhagem Celular , Meios de Cultura Livres de Soro/farmacologia , Citosol/metabolismo , Complexo Dinactina , Dineínas/metabolismo , Hepatócitos/citologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Ligação Proteica , Fator de Transcrição STAT3 , Fator de Transcrição STAT5 , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA