Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 40(3): 617-632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36869247

RESUMO

Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Fenômenos Químicos , Peptídeo Hidrolases , Polímeros , Permeabilidade , Sistemas de Liberação de Medicamentos
2.
J Biomed Sci ; 28(1): 10, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33451326

RESUMO

Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.


Assuntos
Antivirais/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Internalização do Vírus/efeitos dos fármacos , Animais , Enterovirus/efeitos dos fármacos , Infecções por Enterovirus/virologia , Humanos , Camundongos
3.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445463

RESUMO

Enterovirus A71 (EV-A71) is a major neurovirulent agent capable of causing severe hand, foot and mouth disease (HFMD) associated with neurological complications and death. Currently, no FDA-approved antiviral is available for the treatment of EV-A71 infections. The flavonoid silymarin was shown to exert virucidal effects, but the binding site on the capsid was unknown. In this study, the ligand interacting site of silymarin was determined in silico and validated in vitro. Moreover, the potential of EV-A71 to develop resistance against silymarin was further evaluated. Molecular docking of silymarin with the capsid of EV-A71 indicated that silymarin binds to viral protein 1 (VP1) of EV-A71, specifically at the GH loop of VP1. The in vitro binding of silymarin with VP1 of EV-A71 was validated using recombinant VP1 through ELISA competitive binding assay. Continuous passaging of EV-A71 in the presence of silymarin resulted in the emergence of a mutant carrying a substitution of isoleucine by threonine (I97T) at position 97 of the BC loop of EV-A71. The mutation was speculated to overcome the inhibitory effects of silymarin. This study provides functional insights into the underlying mechanism of EV-A71 inhibition by silymarin, but warrants further in vivo evaluation before being developed as a potential therapeutic agent.


Assuntos
Antivirais/química , Proteínas do Capsídeo/química , Capsídeo/química , Enterovirus Humano A/química , Simulação de Acoplamento Molecular , Silimarina/química , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Farmacorresistência Viral Múltipla/genética , Enterovirus Humano A/genética , Humanos , Mutação , Estrutura Secundária de Proteína
4.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770987

RESUMO

Enterovirus 71 (EV-A71) is one of the predominant etiological agents of hand, foot and mouth disease (HMFD), which can cause severe central nervous system infections in young children. There is no clinically approved vaccine or antiviral agent against HFMD. The SP40 peptide, derived from the VP1 capsid of EV-A71, was reported to be a promising antiviral peptide that targeted the host receptor(s) involved in viral attachment or entry. So far, the mechanism of action of SP40 peptide is unknown. In this study, interactions between ten reported cell receptors of EV-A71 and the antiviral SP40 peptide were evaluated through molecular docking simulations, followed by in vitro receptor blocking with specific antibodies. The preferable binding region of each receptor to SP40 was predicted by global docking using HPEPDOCK and the cell receptor-SP40 peptide complexes were refined using FlexPepDock. Local molecular docking using GOLD (Genetic Optimization for Ligand Docking) showed that the SP40 peptide had the highest binding score to nucleolin followed by annexin A2, SCARB2 and human tryptophanyl-tRNA synthetase. The average GoldScore for 5 top-scoring models of human cyclophilin, fibronectin, human galectin, DC-SIGN and vimentin were almost similar. Analysis of the nucleolin-SP40 peptide complex showed that SP40 peptide binds to the RNA binding domains (RBDs) of nucleolin. Furthermore, receptor blocking by specific monoclonal antibody was performed for seven cell receptors of EV-A71 and the results showed that the blocking of nucleolin by anti-nucleolin alone conferred a 93% reduction in viral infectivity. Maximum viral inhibition (99.5%) occurred when SCARB2 was concurrently blocked with anti-SCARB2 and the SP40 peptide. This is the first report to reveal the mechanism of action of SP40 peptide in silico through molecular docking analysis. This study provides information on the possible binding site of SP40 peptide to EV-A71 cellular receptors. Such information could be useful to further validate the interaction of the SP40 peptide with nucleolin by site-directed mutagenesis of the nucleolin binding site.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Enterovirus Humano A/metabolismo , Humanos , Peptídeos/síntese química , Peptídeos/química , Receptores de Superfície Celular/metabolismo , Software
5.
Int J Mol Sci ; 20(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871133

RESUMO

Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.


Assuntos
Anticorpos Neutralizantes/imunologia , Doença de Mão, Pé e Boca/imunologia , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/imunologia , Animais , Enterovirus/imunologia , Enterovirus Humano A/imunologia , Humanos
6.
Int J Med Sci ; 15(11): 1143-1152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123051

RESUMO

Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1ß, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Linfócitos T/imunologia , Criança , China , Doença de Mão, Pé e Boca/imunologia , Humanos
7.
Virol J ; 13(1): 194, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894305

RESUMO

BACKGROUND: Hand, foot and mouth disease is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. EV-A71 infection is associated with high fever, rashes and ulcers but more severe symptoms such as cardiopulmonary failure and death have been reported. The lack of vaccines highlighted the urgency of developing preventive agents against EV-A71. The molecular determinants of virulent phenotypes of EV-A71 is unclear. It remains to be investigated if specific molecular determinants would affect the cell culture growth characteristics of the EV-A71 fatal strain in Rhabdomyosarcoma (RD) cells. RESULTS: In this study, several genetically modified sub-genotype B4 EV-A71 mutants were constructed by site-directed mutations at positions 158, 475, 486, 487 and 5262 or through partial deletion of the 5'-NTR region (∆ 11 bp from nt 475 to 486) to generate a deletion mutant (PD). EV-A71 mutants 475 and PD caused minimal cytopathic effects, produced lowest viral RNA copy number, viral particles as well as minimal amount of viral protein (VP1) in RD cells when compared to mutants 158, 486, 487 and 5262. CONCLUSIONS: The molecular determinants of virulent phenotypes of EV-A71 sub-genotype B4 strain 41 (5865/Sin/000009) were found to differ from the C158 molecular determinant reported for the fatal EV-A71 sub-genotype B1 strain (clinical isolate 237). The site-directed mutations (SDM) introduced at various sites of the cDNA affected growth of the various mutants when compared to the wild type. Lowest viral RNA copy number, minimal number of plaques formed, higher infectious doses required for 50% lethality of RD cells and much reduced VP1 of the EV-A71 sub-genotype B4 strain 41 genome was attained in mutants carrying SDM at position 475 and through partial deletion of 11 bp at the 5'-NTR region.


Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano A/genética , Fatores de Virulência/genética , Cultura de Vírus , Linhagem Celular Tumoral , Análise Mutacional de DNA , Humanos , Genética Reversa , Ensaio de Placa Viral
8.
Virol J ; 13: 5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26738773

RESUMO

BACKGROUND: The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. METHODS: This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. RESULTS: Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. CONCLUSIONS: Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.


Assuntos
Linhagem da Célula , Enterovirus Humano A/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neurônios/citologia , Neurônios/virologia , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Enterovirus Humano A/efeitos dos fármacos , Expressão Gênica , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/farmacologia , Replicação Viral/efeitos dos fármacos
9.
J Virol ; 87(1): 611-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097443

RESUMO

Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.


Assuntos
Enterovirus Humano A/fisiologia , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Animais , Linhagem Celular , Humanos
10.
Virology ; 589: 109941, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984152

RESUMO

The hand, food, and mouth disease (HFMD) is primarily caused by Enterovirus A71 (EV-A71). EV-A71 outbreaks in the Asia Pacific have been associated with severe neurological disease and high fatalities. Currently, there are no FDA-approved antivirals for the treatment of EV-A71 infections. In this study, the SP81 peptide, derived from the VP1 capsid protein of EV-A71 was shown to be a promising antiviral candidate for the treatment of EV-A71 infections. SP81 peptide was non-toxic to RD cells up to 45 µM, with a half-maximal cytotoxic concentration (CC50) of 90.32 µM. SP81 peptide exerted antiviral effects during the pre- and post-infection stages with 50% inhibitory concentrations (IC50) of 4.529 µM and 1.192 µM, respectively. Direct virus inactivation of EV-A71 by the SP81 peptide was also observed with an IC50 of 8.076 µM. Additionally, the SP81 peptide exhibited direct virus inactivation of EV-A71 at 95% upon the addition of the SP81 peptide within 5 min. This study showed that the SP81 peptide exhibited significant inhibition of EV-A71 and could serve as a promising antiviral agent for further clinical development against EV-A71 infections.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Humanos , Infecções por Enterovirus/tratamento farmacológico , Peptídeos/farmacologia , Antígenos Virais , Antivirais/farmacologia
11.
Biochem Biophys Res Commun ; 433(4): 607-10, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23535377

RESUMO

Enterovirus 71 (EV71) is one of the main etiological agents of the Hand, Foot and Mouth Disease (HFMD) and has been known to cause fatal neurological complications such as herpangina, aseptic meningitis, poliomyelitis-like paralysis and encephalitis. EV71 is endemic in the Asia-Pacific region and causes occasional epidemics. In order to better understand EV71 infection, we compared the proteome between EV71-susceptible and EV71-resistant human Rhabdomyosarcoma (RD) cell line. We found significant differences in the ß-actin variants between the EV71-susceptible RD cells and EV71-resistant RD cells, suggesting that ß-actin, in association with other proteins such as annexin 2 is required in vesicular transport of EV71. This finding further support our previous study that actin potentially plays a role in pathogenesis and the establishment of the disease in HFMD.


Assuntos
Actinas/metabolismo , Enterovirus Humano A/fisiologia , Replicação Viral , Anexina A2/metabolismo , Sítios de Ligação , Transporte Biológico , Linhagem Celular Tumoral , Reservatórios de Doenças/virologia , Eletroforese em Gel Bidimensional , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Humanos , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteoma/análise
12.
Vaccines (Basel) ; 11(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36992213

RESUMO

EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome give rise to quasispecies within the viral population that could be further defined by haplotypes. In vitro virulence of EV-A71 was shown by plaque size in Rhabdomyosarcoma (RD) cells, which was substantiated by in vitro characterizations of growth, RNA replication, binding, attachment and host cell internalization. Viruses could exhibit different host cell adaptations in different cell lines during viral passaging. The EV-A71/WT (derived from EV-A71 subgenotype B4) was shown to comprise six haplotypes through next-generation sequencing, where only EV-A71/Hap2 was found to be cultivable in RD cells, while EV-A71/Hap4 was the only cultivable haplotype in Vero cells. The EV-A71/WT produced plaques of four different sizes (small, medium, big, huge) in RD cells, while only two plaque variants (small, medium) were present in Vero cells. The small plaque variant isolated from RD cells displayed lower RNA replication rates, slower in vitro growth kinetics, higher TCID50 and lower attachment, binding and entry ability when compared against EV-A71/WT due to the mutation at 3D-S228P that disrupted the active site of the RNA polymerase, resulting in low replication and growth of the variant.

13.
Peptides ; 136: 170443, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171280

RESUMO

The emergence of new and resistant viruses is a serious global burden. Conventional antiviral therapy with small molecules has led to the development of resistant mutants. In the case of hand, foot and mouth disease (HFMD), the absence of a US-FDA approved vaccine calls for urgent need to develop an antiviral that could serve as a safe, potent and robust therapy against the neurovirulent Enterovirus A71 (EV-A71). Natural peptides such as lactoferrin, melittin and synthetic peptides such as SP40, RGDS and LVLQTM have been studied against EV-A71 and have shown promising results as potent antivirals in pre-clinical studies. Peptides are considered safe, efficacious and pose fewer chances of resistance. Poor pharmacokinetic features of peptides can be overcome by the use of chemical modifications to improve in vivo delivery particularly by oral route. The use of nanotechnology can remarkably assist in the oral delivery of peptides and enhance stability in vivo. This can greatly increase patient compliance and make it more attractive as antiviral therapy.


Assuntos
Antivirais/uso terapêutico , Enterovirus Humano A/genética , Doença de Mão, Pé e Boca/tratamento farmacológico , Peptídeos/uso terapêutico , Enterovirus Humano A/efeitos dos fármacos , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/virologia , Humanos , Peptídeos/genética
14.
Virus Res ; 303: 198456, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314773

RESUMO

Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). SP40 peptide was previously identified to inhibit EV-A71 strains from genotypes A, B and C. However, the stability and antiviral activity of SP40 peptide in human serum are yet to be established. To address this, we evaluated the stability and anti-EV-A71 activity of SP40 peptide after incubation in 25 % human serum. Reverse-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography-mass spectrometry (LC/MS) were utilized to evaluate serum stability and cleavage patterns of SP40 peptide after incubation in human serum. Cell protection assay was used to evaluate the anti-EV-A71 activity of SP40 peptide after incubation in human serum and to identify the minimal active sequence of SP40 peptide that retained antiviral activity. The results showed that the SP40 peptide was stable in human serum with 56 % of the full-length SP40 peptide being detected after 48 h incubation in human serum. The SP40 peptide was mainly cleaved by exopeptidases and no endoprotease recognition sites were identified within the SP40 peptide. Cell protection assays revealed that the SP40 peptide retained substantial activity after 24 and 48 h incubation in human serum. Furthermore, the data revealed that three amino acids at the N-terminus and one amino acid at the C-terminus of the SP40 peptide were dispensable for its antiviral activity. Importantly, the four truncated peptides displayed better potency than the full-length SP40 peptide. Overall, this study provided insights into the stability and activity of SP40 peptide in human serum and will facilitate the development of SP40 peptide as an anti-EV-A71 agent.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Antivirais/uso terapêutico , Enterovirus Humano A/genética , Humanos , Peptídeos/metabolismo
15.
Life Sci ; 287: 120097, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715144

RESUMO

AIMS: Enterovirus A71 (EV-A71) is an etiological agent of hand foot and mouth disease (HFMD) and has the potential to cause severe neurological infections in children. L-SP40 peptide was previously known to inhibit EV-A71 by prophylactic action. This study aimed to identify the mechanism of inhibition in Rhabdomyosarcoma (RD) cells and in vivo therapeutic potential of L-SP40 peptide in a murine model. MAIN METHODS: A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71. KEY FINDINGS: The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs). SIGNIFICANCE: L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.


Assuntos
Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos ICR , Fragmentos de Peptídeos/administração & dosagem , Ligação Proteica/fisiologia , Resultado do Tratamento , Nucleolina
16.
Viruses ; 12(2)2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041232

RESUMO

Flavonoids are natural biomolecules that are known to be effective antivirals. These biomolecules can act at different stages of viral infection, particularly at the molecular level to inhibit viral growth. Enterovirus A71 (EV-A71), a non-enveloped RNA virus, is one of the causative agents of hand, foot and mouth disease (HFMD), which is prevalent in Asia. Despite much effort, no clinically approved antiviral treatment is available for children suffering from HFMD. Flavonoids from plants serve as a vast reservoir of therapeutically active constituents that have been explored as potential antiviral candidates against RNA and DNA viruses. Here, we reviewed flavonoids as evidence-based natural sources of antivirals against non-picornaviruses and picornaviruses. The detailed molecular mechanisms involved in the inhibition of EV-A71 infections are discussed.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Flavonoides/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Criança , Ensaios Clínicos como Assunto , Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/tratamento farmacológico , Doença de Mão, Pé e Boca/virologia , Humanos , Camundongos
17.
BMC Complement Med Ther ; 20(1): 97, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293397

RESUMO

BACKGROUND: The hand, foot and mouth disease (HFMD) is a febrile and exanthematous childhood disease mainly caused by Enterovirus 71 (EV-A71). In severe HFMD, virulent EV-A71 strains can cause acute flaccid paralysis and cardiopulmonary edema leading to death. Currently, no FDA approved antiviral treatment or vaccine is available for EV-A71. Flavonoids such as silymarin and baicalein are known to possess in vitro antiviral properties against viruses. In this study, the cytotoxicity and antiviral activity of silymarin, baicalein and baicalin were investigated. METHODS: The cytotoxic effects of three flavonoids towards rhabdomyosarcoma (RD) cells were first examined using cell proliferation MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Compounds found to be non-cytotoxic in RD cells were evaluated for their in vitro antiviral properties against the EV-A71 subgenotype B4 strain 41 (5865/SIN/000009) using antiviral assays. Viral infectivity was determined by reduction of the formation of plaques in RD cells. For the measurement of RNA copy number, the real time quantitative reverse transcription PCR (qRT-PCR) was used. The most potent compound was further evaluated to determine the mode of action of inhibition by time course, virus attachment and entry assays in Vero cells. RESULTS: Silymarin was shown to exert direct extracellular virucidal effects against EV-A71 at 50% inhibitory concentration (IC50) of 15.2 ± 3.53 µg/mL with SI of 10.53. Similarly, baicalein exhibited direct extracellular virucidal effects against EV-A71 at a higher IC50 value of 30.88 ± 5.50 µg/mL with SI of 13.64. Besides virucidal activity, silymarin was shown to block both viral attachment and entry of EV-A71 to inhibit infection in Vero cells. CONCLUSIONS: Silymarin has a stronger inhibition activity against EV-A71 in comparison to baicalein. It could serve as a promising antiviral drug to treat EV-A71 infections.


Assuntos
Enterovirus Humano A/efeitos dos fármacos , Flavanonas/farmacologia , Flavonoides/farmacologia , Silimarina/farmacologia , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Chlorocebus aethiops , Humanos , Células Vero
18.
Ther Adv Vaccines Immunother ; 7: 2515135519888998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799495

RESUMO

Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot and mouth disease (HFMD) in the world, infecting mostly infants and young children (<5 years of age) in Asia. Approximately 2 million cases of HFMD were reported in China each year, of which approximately 45-50% were due to EV-A71. Most of the HFMD infections caused by EV-A71 usually result in mild symptoms with rashes and ulcers in the mouth. However, virulent strains of EV-A71 can infect the central nervous system and cause severe neurologic diseases, leading to reduced cognitive ability, acute flaccid paralysis and death. The lack of understanding of cellular immunity for long-term protection from the HFMD disease represents a major obstacle for vaccine development. In particular, the role of innate and T cell immunity during HFMD infection remains unclear and there is evidence suggesting the importance of CD4+ and CD8+ T cells for protective immunity. Currently, no US FDA-approved vaccine is available for EV-A71. Although the inactivated vaccines produced in China are highly effective (vaccine efficacy >95%), they lack the cellular immunity required for long-term protection. In this review, we discuss the findings that support the protective roles of innate and T cell immunity against EV-A71 infection, which will provide the knowledge needed for the urgent development of efficacious vaccines that will confer long-term protection.

19.
Sci Rep ; 9(1): 5427, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931960

RESUMO

Enterovirus A71 (EV-A71) is an emerging pathogen in the Enterovirus A species group. EV-A71 causes hand, foot and mouth disease (HFMD), with virulent variants exhibiting polio-like acute flaccid paralysis and other central nervous system manifestations. We analysed all enterovirus A71 complete genomes with collection dates from 2008 to mid-2018. All sub-genotypes exhibit a strong molecular clock with omega (dN/dS) suggesting strong purifying selection. In sub-genotypes B5 and C4, positive selection can be detected at two surface sites on the VP1 protein, also detected in positive selection studies performed prior to 2008. Toggling of a limited repertoire of amino acids at these positively selected residues over the last decade suggests that EV-A71 may be undergoing a sustained frequency-dependent selection process for immune evasion, raising issues for vaccine development. These same sites have also been previously implicated in virus-host binding and strain-associated severity of HFMD, suggesting that immune evasion may be an indirect driver for virulence (154 words).


Assuntos
Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/imunologia , Evasão da Resposta Imune , Virulência , Sequência de Aminoácidos , Antígenos Virais/imunologia , Sítios de Ligação , Proteínas do Capsídeo/química , Enterovirus Humano A/classificação , Enterovirus Humano A/patogenicidade , Doença de Mão, Pé e Boca/virologia , Filogenia
20.
Sci Rep ; 9(1): 4805, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886246

RESUMO

Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.


Assuntos
Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Vacinas Virais/administração & dosagem , Virulência/genética , Animais , Antígenos Virais/análise , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Enterovirus Humano A/genética , Enterovirus Humano A/isolamento & purificação , Genoma Viral/genética , Doença de Mão, Pé e Boca/diagnóstico , Doença de Mão, Pé e Boca/imunologia , Doença de Mão, Pé e Boca/virologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , Camundongos , MicroRNAs/genética , Mutação , RNA Viral/isolamento & purificação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA