Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glia ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989661

RESUMO

Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.

2.
Brain ; 146(5): 1844-1858, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314052

RESUMO

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
3.
J Neurochem ; 145(3): 245-257, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315582

RESUMO

Peripheral myelin protein 22 (PMP22) is a component of compact myelin in the peripheral nervous system. The amount of PMP22 in myelin is tightly regulated, and PMP22 over or under-expression cause Charcot-Marie-Tooth 1A (CMT1A) and Hereditary Neuropathy with Pressure Palsies (HNPP). Despite the importance of PMP22, its function remains largely unknown. It was reported that PMP22 interacts with the ß4 subunit of the laminin receptor α6ß4 integrin, suggesting that α6ß4 integrin and laminins may contribute to the pathogenesis of CMT1A or HNPP. Here we asked if the lack of α6ß4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP22 and ß4 integrin may not interact directly in myelinating Schwann cells, however, ablating ß4 integrin delays the formation of tomacula, a characteristic feature of HNPP. In contrast, ablation of integrin ß4 worsens nerve conduction velocities and non-compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.


Assuntos
Artrogripose/metabolismo , Neuropatia Hereditária Motora e Sensorial/metabolismo , Integrina alfa6beta4/metabolismo , Células de Schwann/metabolismo , Animais , Artrogripose/patologia , Neuropatia Hereditária Motora e Sensorial/patologia , Camundongos , Camundongos Knockout , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células de Schwann/patologia
4.
Hum Mol Genet ; 25(14): 3055-3069, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288457

RESUMO

Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A). Rodent models of CMT1A have been used to show that reducing Pmp22 overexpression mitigates several aspects of a CMT1A-related phenotype. Mechanistic studies of Pmp22 regulation identified enhancers regulated by the Sox10 (SRY sex determining region Y-box 10) and Egr2/Krox20 (Early growth response protein 2) transcription factors in myelinated nerves. However, relatively little is known regarding how other transcription factors induce Pmp22 expression during Schwann cell development and myelination. Here, we examined Pmp22 enhancers as a function of cell type-specificity, nerve injury and development. While Pmp22 enhancers marked by active histone modifications were lost or remodeled after injury, we found that these enhancers were permissive in early development prior to Pmp22 upregulation. Pmp22 enhancers contain binding motifs for TEA domain (Tead) transcription factors of the Hippo signaling pathway. We discovered that Tead1 and co-activators Yap and Taz are required for Pmp22 expression, as well as for the expression of Egr2 Tead1 directly binds Pmp22 and Egr2 enhancers early in development and Tead1 binding is induced during myelination, correlating with Pmp22 expression. The data identify Tead1 as a novel regulator of Pmp22 expression during development in concert with Sox10 and Egr2.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas de Ligação a DNA/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteínas da Mielina/genética , Doenças do Sistema Nervoso Periférico/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição/genética , Animais , Doença de Charcot-Marie-Tooth/patologia , Variações do Número de Cópias de DNA/genética , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Neurogênese/genética , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Células de Schwann/metabolismo , Células de Schwann/patologia , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/biossíntese
5.
J Peripher Nerv Syst ; 17(2): 141-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22734899

RESUMO

By sequencing of the FGD4 coding sequence in a cohort of 101 patients affected by autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT), we have identified two novel missense mutations in FGD4 in two patients from consanguineous descent: p.Arg442His in an Algerian patient and p.Met566Ile in a Lebanese girl. The patients present early onset, slowly progressive CMT, with drastic reduction of nerve conduction velocities. These mutations are the second and third missense mutations characterized in FGD4. They are likely to lead to conformational changes in the PH1 and FYVE domains.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas dos Microfilamentos/genética , Mutação de Sentido Incorreto , Adolescente , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Neuromolecular Med ; 14(1): 40-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22331516

RESUMO

In 2002, we identified LMNA as the first gene responsible for an autosomal recessive axonal form of Charcot-Marie-Tooth disease, AR-CMT2A. All patients were found to be homozygous for the same mutation in the LMNA gene, p.Arg298Cys. In order to investigate the physiopathological mechanisms underlying AR-CMT2A, we have generated a knock-in mouse model for the Lmna p.Arg298Cys mutation. We have explored these mice through an exhaustive series of behavioral tests and histopathological analyses, but were not able to find any peripheral nerve phenotype, even at 18 months of age. Interestingly at the molecular level, however, we detect a downregulation of the Lmna gene in all tissues tested from the homozygous knock-in mouse Lmna (R298C/R298C) (skeletal muscle, heart, peripheral nerve, spinal cord and cerebral trunk). Importantly, we further reveal a significant upregulation of Pmp22, specifically in the sciatic nerves of Lmna (R298C/R298C) mice. These results indicate that, despite the absence of a perceptible phenotype, abnormalities exist in the peripheral nerves of Lmna (R298C/R298C) mice that are absent from other tissues. Although the mechanisms leading to deregulation of Pmp22 in Lmna (R298C/R298C) mice are still unclear, our results support a relation between Lmna and Pmp22 and constitute a first step toward understanding AR-CMT2A physiopathology.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Lamina Tipo A/fisiologia , Animais , Comportamento Animal , Doença de Charcot-Marie-Tooth/fisiopatologia , Doença de Charcot-Marie-Tooth/psicologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Técnicas de Introdução de Genes , Lamina Tipo A/genética , Camundongos , Proteínas da Mielina/biossíntese , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
7.
Am J Hum Genet ; 81(1): 1-16, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17564959

RESUMO

Charcot-Marie-Tooth (CMT) disorders are a clinically and genetically heterogeneous group of hereditary motor and sensory neuropathies characterized by muscle weakness and wasting, foot and hand deformities, and electrophysiological changes. The CMT4H subtype is an autosomal recessive demyelinating form of CMT that was recently mapped to a 15.8-Mb region at chromosome 12p11.21-q13.11, in two consanguineous families of Mediterranean origin, by homozygosity mapping. We report here the identification of mutations in FGD4, encoding FGD4 or FRABIN (FGD1-related F-actin binding protein), in both families. FRABIN is a GDP/GTP nucleotide exchange factor (GEF), specific to Cdc42, a member of the Rho family of small guanosine triphosphate (GTP)-binding proteins (Rho GTPases). Rho GTPases play a key role in regulating signal-transduction pathways in eukaryotes. In particular, they have a pivotal role in mediating actin cytoskeleton changes during cell migration, morphogenesis, polarization, and division. Consistent with these reported functions, expression of truncated FRABIN mutants in rat primary motoneurons and rat Schwann cells induced significantly fewer microspikes than expression of wild-type FRABIN. To our knowledge, this is the first report of mutations in a Rho GEF protein being involved in CMT.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Genes Recessivos , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas dos Microfilamentos/genética , Sequência de Aminoácidos , Animais , Cromossomos Humanos Par 12/genética , Expressão Gênica , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas dos Microfilamentos/análise , Dados de Sequência Molecular , Mutação , Linhagem , Mapeamento Físico do Cromossomo , Ratos , Células de Schwann/enzimologia , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA