Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521067

RESUMO

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Assuntos
Cromossomos , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo II/genética , Cromossomos/genética , Mitose/genética , Interfase/genética , Polímeros
2.
Phys Rev E ; 107(5-1): 054135, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329090

RESUMO

Chromosomes are crumpled polymer chains further folded into a sequence of stochastic loops via loop extrusion. While extrusion has been verified experimentally, the particular means by which the extruding complexes bind DNA polymer remains controversial. Here we analyze the behavior of the contact probability function for a crumpled polymer with loops for the two possible modes of cohesin binding, topological and nontopological mechanisms. As we show, in the nontopological model the chain with loops resembles a comb-like polymer that can be solved analytically using the quenched disorder approach. In contrast, in the topological binding case the loop constraints are statistically coupled due to long-range correlations present in a nonideal chain, which can be described by the perturbation theory in the limit of small loop densities. As we show, the quantitative effect of loops on a crumpled chain in the case of topological binding should be stronger, which is translated into a larger amplitude of the log-derivative of the contact probability. Our results highlight a physically different organization of a crumpled chain with loops by the two mechanisms of loop formation.


Assuntos
Cromossomos , DNA , Cromossomos/metabolismo , DNA/química , Probabilidade , Polímeros
3.
Nat Commun ; 12(1): 41, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397980

RESUMO

Mammalian and Drosophila genomes are partitioned into topologically associating domains (TADs). Although this partitioning has been reported to be functionally relevant, it is unclear whether TADs represent true physical units located at the same genomic positions in each cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-C maps in individual Drosophila genomes. These maps demonstrate chromatin compartmentalization at the megabase scale and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a high level of active epigenetic marks. Polymer simulations demonstrate that chromatin folding is best described by the random walk model within TADs and is most suitably approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe prominent cell-to-cell variability in the long-range contacts between either active genome loci or between Polycomb-bound regions, suggesting an important contribution of stochastic processes to the formation of the Drosophila 3D genome.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Conformação de Ácido Nucleico , Animais , Biopolímeros/metabolismo , Cromatina/genética , Bases de Dados Genéticas , Epigênese Genética , Haploidia , Modelos Genéticos , Processos Estocásticos , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA