Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942338

RESUMO

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Assuntos
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Glicosilação , Anotação de Sequência Molecular , Peroxidases/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimologia , Análise de Sequência de DNA , Madeira/microbiologia
2.
Fungal Genet Biol ; 45(5): 638-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18308593

RESUMO

The breakdown of lignin by fungi is a key step during carbon recycling in terrestrial ecosystems. This process is of great interest for green and white biotechnological applications. Given the importance of these enzymatic processes, we have classified the enzymes potentially involved in lignin catabolism into sequence-based families and integrated them in a newly developed database, designated Fungal Oxidative Lignin enzymes (FOLy). Families were defined after sequence similarity searches starting from protein sequences and validated by the convergence of results with biochemical experiments reported in the literature. The resulting database was applied as a tool for the functional annotation of genomes from different fungi, namely (i) the Basidiomycota Coprinopsis cinerea, Phanerochaete chrysosporium and Ustilago maydis and (ii) the Ascomycota Aspergillus nidulans and Trichoderma reesei. Genomic comparison of the oxidoreductases of these fungi revealed significant differences in the putative enzyme arsenals. Two Ascomycota fungal genomes were annotated and new candidate genes were identified that could be useful for lignin degradation and (or) melanin synthesis, and their function investigated experimentally. This database efforts aims at providing the means to get new insights for the understanding and biotechnological exploitation of the lignin degradation. A WWW server giving access to the routinely updated FOLy classifications of enzymes potentially involved in lignin degradation can be found at http://foly.esil.univ-mrs.fr.


Assuntos
Bases de Dados de Proteínas , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Lignina/metabolismo , Oxirredutases/classificação , Oxirredutases/metabolismo , Proteínas Fúngicas/genética , Oxirredutases/genética , Homologia de Sequência de Aminoácidos
3.
Dev Comp Immunol ; 75: 120-126, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28232131

RESUMO

Two different adaptive immune systems (AIS) are present in the two phyla of vertebrates (jawed vertebrates and cyclostomes). The jawed vertebrate system is based on IG/TCR/RAG/MHC while the cyclostome system is based on VLRCs and AID-like enzymes both systems using homologous Cell types (B-cell and B-cell Like, T-cell and T-cell like). We will present our current view of the evolution of these two AISs and present alternative hypotheses that could explain the apparent convergent evolution of the two systems. We will also discuss why comparative immunology analyses should be based on evolutionary biology approaches and not on the scale of progress one.


Assuntos
Linfócitos B/imunologia , Feiticeiras (Peixe)/imunologia , Lampreias/imunologia , Linfócitos T/imunologia , Vertebrados/imunologia , Imunidade Adaptativa , Animais , Evolução Biológica , Evolução Molecular , Pesqueiros , Humanos , Arcada Osseodentária , Camundongos , Modelos Imunológicos , Receptores de Antígenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA