Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Environ Res ; 234: 116577, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429399

RESUMO

Membrane distillation crystallization (MDC) is an emerging hybrid thermal membrane technology that synergizes membrane distillation (MD) and crystallization, which can achieve both freshwater and minerals recovery from high concentrated solutions. Due to the outstanding hydrophobic nature of the membranes, MDC has been widely used in numerous fields such as seawater desalination, valuable minerals recovery, industrial wastewater treatment and pharmaceutical applications, where the separation of dissolved solids is required. Despite the fact that MDC has shown great promise in producing both high-purity crystals and freshwater, most studies on MDC remain limited to laboratory scale, and industrializing MDC processes is currently impractical. This paper summarizes the current state of MDC research, focusing on the mechanisms of MDC, the controls for membrane distillation (MD), and the controls for crystallization. Additionally, this paper categorizes the obstacles hindering the industrialization of MDC into various aspects, including energy consumption, membrane wetting, flux reduction, crystal yield and purity, and crystallizer design. Furthermore, this study also indicates the direction for future development of the industrialization of MDC.


Assuntos
Águas Residuárias , Purificação da Água , Destilação , Cristalização , Membranas Artificiais , Minerais
2.
Environ Res ; 231(Pt 3): 116265, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263466

RESUMO

Modelling the removal of monovalent and divalent ions from seawater via nanofiltration is crucial for pre-treatment in seawater reverse osmosis systems. Effective separation of divalent ions through nanofiltration and allowing the permeate containing only monovalent ions to pass through the reverse osmosis system produces pure NaCl salt from the concentrate. However, the Donnan steric pore model and dielectric exclusion assume a uniformly distributed cylinder pore morphology, which is not representative of the actual membrane structure. This study analyzed the impact of membrane thickness on neutral solute removal and investigated the effect of two different methods for calculating the Peclet number on rejection rates of monovalent and divalent salts. Results show that membrane thickness has a significant effect on rejection rates, particularly for uncharged solutes in the range of 0.5-0.7 solute radius to membrane pore size ratio. Operating pressures above 10 bar favour the use of effective active layer thickness over the membrane pore size to calculate the Peclet number. At low pressures, using the effective active layer can lead to overestimation of monovalent salt rejection and underestimation of divalent salt rejection. This study highlights the importance of appropriate Peclet number calculation methods based on applied pressure when modelling membrane separation performance.


Assuntos
Filtração , Membranas Artificiais , Osmose , Filtração/métodos , Íons , Água do Mar , Soluções
3.
J Environ Manage ; 301: 113791, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592670

RESUMO

The conversion of low-value plastic waste into high-value products such as carbon nanomaterial is of recent interest. In the current study, the non-condensable pyrolysis gases, produced from Polypropylene Copolymer (PPC) feedstock, was converted into bamboo-type carbon nanotubes (BCNTs) through catalytic chemical vapour deposition using biochar. Experiments were conducted in a three-zone furnace fixed bed reactor, where PPC was pyrolysed in the second zone and carbon nanotubes (CNTs) growth was eventuated in the third zone. The effects of different growth temperatures (500, 700, 900 °C) and biochar particle sizes (nanoparticle as well as 0-100 and 100-300 µm) were investigated to optimise the production of hydrogen and the yield of carbon nanotubes on the biochar surface. Biochar samples used in the synthesis of CNTs were obtained from the pyrolysis of saw dust at 700 °C in a muffle furnace. Analyses performed by using Scanning electron microscopy, Transmission electron microscopy, X-ray diffraction, and Raman spectroscopy techniques suggested that the best crystalline structure of CNTs were obtained at 900 °C with nano-sized biochar as a catalyst. The strong gas-solid contact and void fraction of nano-sized particles enhances the diffusion-precipitation mechanism, leading to the growth of CNTs. The nano-sized biochar increased hydrogen production at 900 °C and reduced the polycyclic aromatic hydrocarbons content in oil to only 1%, which is advantageous for further utilisation. Therefore, the production of high-value CNTs from waste plastic using low-cost biochar catalyst can be a sustainable approach in the management of waste plastic while participating in the circular economy.


Assuntos
Nanotubos de Carbono , Pirólise , Carvão Vegetal , Gases , Polímeros , Polipropilenos
4.
J Environ Manage ; 249: 109394, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434051

RESUMO

The forward osmosis (FO) membrane process has recently established in many applications such as desalination, wastewater reuse, water purification, food processing, resource recovery and sustainable power generation. However, many researchers raise the demand for systematic investigation on FO membrane fouling, which leads to reduced flux yield. In this study, the effect of coagulation/persulfate as a feed pre-treatment was used to mitigate FO organic fouling during municipal wastewater treatment, and compared with a control coagulation and potassium persulfate pre-treatments. Mass balance results using size exclusion chromatography exhibited that the decrease in the flux with consecutive filtration cycles was likely due to humic-like molecules in the feedwater. Coagulation/persulfate contributed to a more significant flux improvement than stand-alone coagulation or persulfate pre-treatment, resulting in a smaller amount of organics attachment to the membrane. A better flux enhancement by coagulation/persulfate was again evidenced by a higher decrease in the attachment of reversible and irreversible organic foulants on the membrane surface. This study identified the major organic components responsible for FO fouling and established the potential of coagulation/persulfate pre-treatment for reducing organic fouling of FO membrane during municipal wastewater treatment.


Assuntos
Águas Residuárias , Purificação da Água , Filtração , Membranas Artificiais , Osmose
5.
Chemosphere ; 359: 142318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735495

RESUMO

The effective removal of micropollutants by water treatment technologies remains a significant challenge. Herein, we develop a CoFe layered double hydroxide (CoFeLDH) catalytic membrane for peroxymonosulfate (PMS) activation to achieve efficient micropollutant removal with improved mass transfer rate and reaction kinetics. This study found that the CoFeLDH membrane/PMS system achieved an impressive above 98% degradation of the probe chemical ranitidine at 0.1 mM of PMS including five more micropollutants (Sulfamethoxazole, Ciprofloxacin, Carbamazepine, Acetaminophen and Bisphenol A) at satisfactory level (above 80%). Moreover, significant improvements in water flux and antifouling properties were observed, marking the membrane as a specific advancement in the removal of membrane fouling in water purification technology. The membrane demonstrated consistent degradation efficiency for several micropollutants and across a range of pH (4-9) as well as different anionic environments, thereby showing it suitability for scale-up application. The key role of reactive species such as SO4•-, and O2• - radicals in the degradation process was elucidated. This is followed by the confirmation of the occurrence of redox cycling between Co and Fe, and the presence of CoOH+ that promotes PMS activation. Over the ten cycles, the membrane could be operated with a flux recovery of up to 99.8% and maintained efficient performance over 24 h continuous operation. Finally, the efficiency in degrading micropollutants, coupled with reduced metal leaching, makes the CoFeLDH membrane as a promising technology for application in water treatment.


Assuntos
Hidróxidos , Membranas Artificiais , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Poluentes Químicos da Água/química , Hidróxidos/química , Fenóis/química , Peróxidos/química , Compostos Benzidrílicos/química , Carbamazepina/química , Ranitidina/química , Acetaminofen/química , Sulfametoxazol/química , Ciprofloxacina/química , Catálise , Cobalto/química , Oxirredução
6.
Sci Total Environ ; 867: 161390, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621482

RESUMO

The global health crisis caused by the COVID-19 pandemic has resulted in massive plastic pollution from the use of personal protection equipment (PPE), with polypropylene (PP) being a major component. Owing to the weathering of exposed PPEs, such contamination causes microplastic (MP) and nanoplastic (NP) pollution and is extremely likely to act as a vector for the transportation of COVID-19 from one area to another. Thus, a post-pandemic scenario can forecast with certainty that a significant amount of plastic garbage combined with MP/NP formation has an adverse effect on the ecosystem. Therefore, updating traditional waste management practices, such as landfilling and incineration, is essential for making plastic waste management sustainable to avert this looming catastrophe. This study investigates the post-pandemic scenario of MP/NP pollution and provides an outlook on an integrated approach to the recycling of PP-based plastic wastes. The recovery of crude oil, solid char, hydrocarbon gases, and construction materials by approximately 75, 33, 55, and 2 %, respectively, could be achieved in an environmentally friendly and cost-effective manner. Furthermore, the development of biodegradable and self-sanitizing smart PPEs has been identified as a promising alternative for drastically reducing plastic pollution.


Assuntos
COVID-19 , Microplásticos , Humanos , Plásticos , Pandemias/prevenção & controle , Ecossistema , COVID-19/epidemiologia , Polipropilenos
7.
Chemosphere ; 334: 139011, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37230299

RESUMO

Nano/microplastic (NP/MP) pollution is a growing concern for the water environment. Wastewater treatment plants (WWTPs) are considered the major recipients of MP before discharging into local waterbodies. MPs enter WWTPs mainly from synthetic fibers through washing activities and personal care products. To control and prevent NP/MP pollution, it is essential to have a comprehensive understanding of their characteristics, fragmentation mechanisms, and the effectiveness of the current treatment processes used in WWTPs for NP/MP removal. Therefore, the objectives of this study are to (i) understand the detailed mapping of NP/MP in the WWTP, (ii) understand the fragmentation mechanisms of MP into NP, and (iii) investigate the removal efficiency of NP/MP by existing processes in the WWTP. This study found that fiber is the dominant shape of MP, and polyethylene, polypropylene, polyethylene terephthalate, and polystyrene are the major polymer type of MP in wastewater samples. Crack propagation and mechanical breakdown of MP due to water shear forces induced by treatment facilities (e.g., pumping, mixing, and bubbling) could be the major causes for NP generation in the WWTP. Conventional wastewater treatment processes are ineffective for the complete removal of MPs. Although these processes are capable of removing ∼95% of MPs, they tend to accumulate in sludge. Thus, a significant number of MPs may still be released into the environment from WWTPs on a daily basis. Therefore, this study suggested that using DAF process in the primary treatment unit can be an effective strategy to control MP in the initial stage before it goes to the secondary and tertiary stage.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Águas Residuárias
8.
Chemosphere ; 311(Pt 2): 137014, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328315

RESUMO

Since the end of 2019, the world has faced a major crisis because of the outbreak of COVID-19 disease which has created a severe threat to humanity. To control this pandemic, the World Health Organization gave some guidelines like wearing PPE (personal protective equipment) (e.g., face masks, overshoes, gloves), social distancing, hand hygiene and shutting down all modes of public transport services. During this pandemic, plastic products (e.g., household plastics, PPE and sanitizer bottles) have substantially prevented the spread of this virus. Since the outbreak, approximately 1.6 million tons of plastic waste have been generated daily. However, single-use PPE like face masks (N95), surgical masks and hand gloves contain many non-biodegradable plastics materials. These abandoned products have created a huge number of plastic debris which ended up as microplastics (MPs) followed by nanoplastics (NPs) in nature that are hazardous to the eco-system. These MPs and NPs also act as vectors for the various pathogenic contaminants. The goal of this review is to offer an extensive discussion on the formation of NPs and MPs from all of these abandoned plastics and their long-term impact on the environment as well as human health. This review paper also attempts to assess the present global scenario and the main challenge of waste management to reduce the potential NP/MPs pollution to improve the eco-systems.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Microplásticos , Plásticos , Pandemias/prevenção & controle
9.
Chemosphere ; 337: 139400, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406937

RESUMO

Expanded polystyrene (EPS) pollution in the marine environment is a pressing issue in Queensland, Australia due to a recent flood that scattered hundreds of EPS-containing pontoons along the coastline, causing severe ecological damage. To assist in the clean-up effort and provide crucial data for developing management guidelines, this study investigates the environmental performance of different end-of-life (EoL) disposal/recycling methods, including (i) landfill; (ii) on-site mechanical re-processing using a thermal densifier (MR); and (iii) on-site dissolution/precipitation using d-limonene (DP). Applying the life cycle assessment framework, the results showed that DP was the most environmentally favourable option. Its impacts in climate change (GWP), acidification (TAP), and fossil fuel depletion (FFD) were 612 kg CO2 eq, 4.3 kg SO2 eq, and 184.7 kg oil eq, respectively. For comparison, the impacts of landfilling EPS in these categories were found to be 700 kg CO2 eq, 3.5 kg SO2 eq, and 282 kg oil eq, respectively. Landfill also contributed considerably to eutrophication potential (MEP), at 3.77 kg N eq. Impacts from MR were most significant due to the need to transport the densifier unit to the site. The analysis also revealed that the transportation of personnel and heavy machinery to the site, was the biggest contributor to impacts in the EoL stage. Its impacts in GWP, TAP, MEP, and FFD were 1369.8 kg CO2 eq, 6.5 kg SO2 eq, 0.2189 kg N eq, and 497.7 kg oil eq, respectively. Monte Carlo analysis showed that the conclusions made from these results were stable and reliable. Limitations of this model and recommendations for future investigations were also discussed in this work.


Assuntos
Dióxido de Carbono , Poliestirenos , Animais , Inundações , Poluição Ambiental/análise , Estágios do Ciclo de Vida
10.
Chemosphere ; 299: 134389, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35337827

RESUMO

Microplastics (MP) have become a major emerging class of pollutants representing significant eco-toxicological risks for ecosystems and marine environments. The aim of this study was to identify, classify and quantify MP present in both road dust and stormwater samples. A significantly higher level of MPs within road dust samples was detected from industrial area (1130 particles/kg of dust) than from residential area (520 particles/kg of dust), while stormwater samples from industrial and residential sites yielded 26 particles/L and 17 particles/L, respectively. Fiber-like shape accounted for 53% and 74% in road dust and stormwater samples, respectively. The main polymeric materials collected for both road dust and stormwater samples were, in order of occurrence (i) low-density polyethylene, (ii) high-density polyethylene, (iii) polypropylene, (iv) polyethylene terephthalate, (v) polystyrene, (vi) polyester and (vii) poly (amide). Most of the MP had an average maximum dimension smaller than 2 mm for both road dust and stormwater samples. The results from this study demonstrates that road dust is a significant contributor to MP pollution through direct polymeric materials wear off and transfer through stormwater, which eventually will end up in open water ways and broader ecological niches.


Assuntos
Microplásticos , Poluentes Químicos da Água , Poeira/análise , Ecossistema , Monitoramento Ambiental , Plásticos , Polietileno , Poluentes Químicos da Água/análise
11.
Chemosphere ; 309(Pt 1): 136682, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36195121

RESUMO

NANO: and microplastic (NP/MP) is one of the most challenging types of micropollutants, coming from either direct release or degradation of plastic items into ecosystems. NP/MP can adsorb hazardous pollutants (such as heavy metals and pharmaceutical compounds) and pathogens onto their surface that are consumed by humans, animals, and aquatic living organisms. This paper presents the interaction of NP/MP with other pollutants in the water environment and mechanisms involved to enable the ultimate fate of NP/MP as well as the effectiveness of metal-organic frame (MOF)-based membrane over conventional membrane processes for NP/MP removal. It is found that conventional membranes could remove MPs when their size is usually more than 1000 nm, but they are ineffective in removing NPs. These NPs have potentially greater health impacts due to their greater surface area. MOF-based membrane could effectively remove both NP and MP due to its large porous structure, high adsorption capacity, and low density. This paper also discusses some challenges associated with MOF-based membranes for NP/MP removal. Finally, we conclude a specific MOF-based ultrafiltration membrane (ED-MIL-101 (Cr)) that can potentially remove both negative and positive charged NP/MP from wastewater by electrostatic attraction and repulsion force with efficient water permeability.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Humanos , Microplásticos , Águas Residuárias , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Água , Preparações Farmacêuticas
12.
Environ Sci Pollut Res Int ; 29(22): 32651-32669, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220520

RESUMO

The skyrocketing demand and progressive technology have increased our dependency on electrical and electronic devices. However, the life span of these devices has been shortened because of rapid scientific expansions. Hence, massive volumes of electronic waste (e-waste) is generating day by day. Nevertheless, the ongoing management of e-waste has emerged as a major threat to sustainable economic development worldwide. In general, e-waste contains several toxic substances such as metals, plastics, and refractory oxides. Metals, particularly lead, mercury, nickel, cadmium, and copper along with some valuable metals such as rare earth metals, platinum group elements, alkaline and radioactive metal are very common; which can be extracted before disposing of the e-waste for reuse. In addition, many of these metals are hazardous. Therefore, e-waste management is an essential issue. In this study, we critically have reviewed the existing extraction processes and compared among different processes such as physical, biological, supercritical fluid technologies, pyro and hydrometallurgical, and hybrid methods used for metals extraction from e-waste. The review indicates that although each method has particular merits but hybrid methods are eco-friendlier with extraction efficiency > 90%. This study also provides insight into the technical challenges to the practical realization of metals extraction from e-waste sources.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Resíduo Eletrônico/análise , Metais , Plásticos , Reciclagem/métodos , Gerenciamento de Resíduos/métodos
13.
Chemosphere ; 282: 131053, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34098311

RESUMO

Nano/microplastics (NPs/MPs), a tiny particle of plastic pollution, are known as one of the most important environmental threats to marine ecosystems. Wastewater treatment plants can act as entrance routes for NPs/MPs to the aquatic environment as they breakdown of larger fragments of the plastic component during the treatment process; therefore, it is necessary to remove NPs/MPs during the wastewater treatment process. In this study, understanding the effect of water shear force on the fragmentation of larger size MPs into smaller MPs and NPs and their removal by air flotation and nano-ferrofluid (i.e., magnetite and cobalt ferrite particle as a coagulant) and membrane processes were investigated as a proof-of-concept study. It is found that a two-blade mechanical impeller could fragment MPs from 75, 150 and 300 µm into mean size NPs/MPs of 0.74, 1.14 and 1.88 µm, respectively. Results showed that the maximum removal efficiency of polyethylene, polyvinyl chloride and polyester was 85, 82 and 69%, respectively, in the air flotation process. Increasing the dose of behentrimonium chloride surfactant from 2 to 10 mg/L improved the efficiency of the air flotation process for NPs/MPs removal. It is also found that the removal efficiency of NPs/MPs by the air flotation system depends on solution pH, size, and types of NPs/MPs. This study also found a less significant removal efficiency of NPs/MPs by both types of ferrofluid used in this study with an average removal of 43% for magnetite and 55% for cobalt ferrite. All three plastics tested had similar removal efficiency by the nano-ferrofluid particles, meaning that this removal technique does not rely on the plastic component type. Among all the process tested, both ultrafiltration and microfiltration membrane processes were highly effective, removing more than 90% of NPs/MPs fragment particles. Overall, this study has confirmed the effectiveness of using air flotation and the membrane process to remove NPs/MPs from wastewater.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise
14.
Chemosphere ; 284: 131430, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34323805

RESUMO

Nanoplastics (NPs) have become a major environmental issue due to their adverse effect on the water environment. Wastewater treatment plant (WWTP) is considered as one of the main sources for breaking down of larger-sized plastic debris and microplastics (MPs) into NPs. This study aims to provide a comprehensive understanding of NPs generation in the WWTPs, their physiochemical characteristics and interaction with the WWTPs. It is found that cracking is the major mechanism of plastics fragmentation in the WWTPs. This review also discusses the current membrane process used for NPs removal. It is found that conventional membrane processes are ineffective as they are not designed for NPs removal and fouling is a major obstacle for its application. Therefore, this study concludes by providing an outlook of developing a bio-nanofiltration process that can be used as a tertiary treatment for removing NPs and other components present in water. Such a process can produce NPs-free water for non-potable use or safe discharge into open waterways.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
15.
Environ Pollut ; 255(Pt 2): 113326, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600707

RESUMO

Microplastics (MPs) contamination in water environment has recently been documented as an emerging environmental threat due to their negative impact on the ecosystem. Their sources are many, but all of them are from synthetic materials. The sources of MPs are cosmetics and personal care products, breakdown or abrasion processes of other plastic products, textile and tyre, bitumen and road marking paints. Because of their low density and small particle size, they are easily discharged into the wastewater drainage systems. Therefore, the municipal wastewater treatment plants (WWTPs) are indicated to be the main recipients of MPs before getting discharged into the natural waterbodies. Therefore, understanding the occurrence and fate of MPs in WWTPs are of great importance towards its control. The aim of this article is to provide a comprehensive review to better understand the pathways of MPs before entering the WWTPs, characteristics of MPs in wastewater, and the removal efficiency of MPs of the existing wastewater treatment technologies adopted by the WWTPs. This review also covers the development of potential microplastics treatment technologies investigated to date. Based on the review of existing literature, it is found that the existing WWTPs are inefficient to completely remove the MPs and there is a risk that they may get discharged into the ambient water sources.


Assuntos
Monitoramento Ambiental/métodos , Microplásticos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Cosméticos/química , Ecossistema , Tamanho da Partícula , Têxteis/análise
16.
Environ Technol ; 39(17): 2243-2250, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28689477

RESUMO

The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.


Assuntos
Incrustação Biológica , Carvão Vegetal , Purificação da Água , Adsorção , Carbono , Filtração , Membranas Artificiais , Compostos Orgânicos
17.
Environ Technol ; 38(5): 579-587, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27315513

RESUMO

Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.


Assuntos
Incrustação Biológica/prevenção & controle , Purificação da Água/métodos , Compostos de Alúmen/química , Análise da Demanda Biológica de Oxigênio , Floculação , Lagos , Membranas Artificiais , Moringa oleifera/química , Esgotos/microbiologia , Ultrafiltração/instrumentação , Poluentes da Água/análise , Poluentes da Água/química , Poluentes da Água/metabolismo , Purificação da Água/instrumentação
18.
Environ Technol ; 38(11): 1383-1389, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27587007

RESUMO

The effects of ozonation, anion exchange resin (AER) and UV/H2O2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H2O2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H2O2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.


Assuntos
Resinas de Troca Aniônica/química , Peróxido de Hidrogênio/química , Oxidantes/química , Ozônio/química , Raios Ultravioleta , Purificação da Água/métodos , Água Potável/química , Membranas Artificiais , Ultrafiltração , Poluentes da Água/química , Poluentes da Água/efeitos da radiação , Purificação da Água/instrumentação
19.
Water Res ; 90: 405-414, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26773606

RESUMO

The impact of long-term (>2 years) biological activated carbon (BAC) treatment for mitigating organic fouling in the microfiltration of biologically treated secondary effluent was investigated. Correlation between the organic constituents and hydraulic filtration resistance was investigated to identify the major components responsible for fouling. Over two years operation, the removal efficiency for dissolved organic carbon (DOC) by the BAC treatment was fairly consistent (30 ± 3%), although the reduction in UVA254 gradually decreased from 56 to 34%. BAC treatment effectively decreased the organic foulants in the effluent and so contributed to the mitigation of membrane fouling as shown by reduction in the unified membrane fouling index (UMFI). BAC consistently removed biopolymers whereas the removal of humic substances decreased from 52 to 25% after two years of BAC operation, and thus led to a gradual decrease in UMFI reduction efficiency from 78 to 43%. This was due to gradual reduction in adsorption capacity of the activated carbon as confirmed by analysis of its pore size distribution. Hence humics also played an important role in membrane fouling. However, there was a good correlation between protein and carbohydrate contents with hydraulically reversible and irreversible filtration resistance, compared with UVA254, turbidity and DOC. Although the mitigation of membrane fouling decreased over time, this study demonstrated that the long-term use of BAC pre-treatment of biologically treated secondary effluent prior to microfiltration has potential to reduce the need for frequent chemical cleaning and so increase membrane life span.


Assuntos
Biopolímeros/química , Carvão Vegetal/química , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Adsorção , Carboidratos/química , Cromatografia/métodos , Substâncias Húmicas , Membranas Artificiais , Peso Molecular , Proteínas/química , Espectrometria de Fluorescência , Poluentes Químicos da Água/análise
20.
Bioresour Technol ; 204: 202-212, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26776150

RESUMO

Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.


Assuntos
Reatores Biológicos , Resíduos Industriais , Têxteis , Águas Residuárias/química , Purificação da Água/métodos , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Esgotos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA