Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; 18(36): e2201115, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35315233

RESUMO

Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.


Assuntos
Hidrogéis , Microgéis , Adesivos , Aldeídos , Ácido Hialurônico/química , Hidrazinas , Hidrazonas , Hidrogéis/química
2.
Adv Mater ; 34(28): e2202261, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35510317

RESUMO

The incorporation of a secondary network into traditional single-network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one-pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free-radical crosslinking of methacrylate-modified hyaluronic acid (HA) to form the primary network and ii) thiol-ene crosslinking of norbornene-modified HA with thiolated guest-host assemblies of adamantane and ß-cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof-of-concept, the IPN hydrogels are implemented as low-viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/química , Adesão Celular , Ácido Hialurônico/química , Hidrogéis/química , Polímeros/química
3.
Adv Mater ; 34(12): e2109194, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34932833

RESUMO

Granular hydrogels have emerged as a new class of injectable and porous biomaterials that improve integration with host tissue when compared to solid hydrogels. Granular hydrogels are typically prepared using spherical particles and this study considers whether particle shape (i.e., isotropic spheres vs anisotropic rods) influences granular hydrogel properties and cellular invasion. Simulations predict that anisotropic rods influence pore shape and interconnectivity, as well as bead transport through granular assemblies. Photo-cross-linkable norbornene-modified hyaluronic acid is used to produce spherical and rod-shaped particles using microfluidic droplet generators and formed into shear-thinning and self-healing granular hydrogels, with particle shape influencing mechanics and injectability. Rod-shaped particles form granular hydrogels that have anisotropic and interconnected pores, with pore size and number influenced by particle shape and degree of packing. Robust in vitro sprouting of endothelial cells from embedded cellular spheroids is observed with rod-shaped particles, including higher sprouting densities and sprout lengths when compared to hydrogels with spherical particles. Cell and vessel invasion into granular hydrogels when injected subcutaneously in vivo are significantly greater with rod-shaped particles, whereas a gradient of cellularity is observed with spherical particles. Overall, this work demonstrates potentially superior functional properties of granular hydrogels with rod-shaped particles for tissue repair.


Assuntos
Células Endoteliais , Hidrogéis , Materiais Biocompatíveis/farmacologia , Ácido Hialurônico , Porosidade
4.
ACS Biomater Sci Eng ; 7(9): 4269-4281, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-33591726

RESUMO

Bulk hydrogels traditionally used for tissue engineering and drug delivery have numerous limitations, such as restricted injectability and a nanoscale porosity that reduces cell invasion and mass transport. An evolving approach to address these limitations is the fabrication of hydrogel microparticles (i.e., "microgels") that can be assembled into granular hydrogels. There are numerous methods to fabricate microgels; however, the influence of the fabrication technique on granular hydrogel properties is unexplored. Herein, we investigated the influence of three microgel fabrication techniques (microfluidic devices (MD), batch emulsions (BE), and mechanical fragmentation by extrusion (EF)) on the resulting granular hydrogel properties (e.g., mechanics, porosity, and injectability). Hyaluronic acid (HA) modified with various reactive groups (i.e., norbornenes (NorHA), pentenoates (HA-PA), and methacrylates (MeHA)) were used to form microgels with an average diameter of ∼100 µm. The MD method resulted in homogeneous spherical microgels, the BE method resulted in heterogeneous spherical microgels, and the EF method resulted in heterogeneous polygonal microgels. Across the various reactive groups, microgels fabricated with the MD and BE methods had lower functional group consumption when compared to microgels fabricated with the EF method. When microgels were jammed into granular hydrogels, the storage modulus (G') of EF granular hydrogels (∼1000-3000 Pa) was consistently an order of magnitude higher than G' for MD and BE granular hydrogels (∼50-200 Pa). Void space was comparable across all groups, although EF granular hydrogels exhibited an increased number of pores and decreased average pore size when compared to MD and BE granular hydrogels. Furthermore, granular hydrogel properties were tuned by varying the amount of cross-linker used during microgel fabrication. Lastly, granular hydrogels were injectable across formulations due to their general shear-thinning and self-healing properties. Taken together, this work thoroughly characterizes the influence of the microgel fabrication technique on granular hydrogel properties to inform the design of future systems for biomedical applications.


Assuntos
Microgéis , Ácido Hialurônico , Hidrogéis , Engenharia Tecidual
5.
Macromol Biosci ; 20(4): e1900364, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077631

RESUMO

Adipose tissue engineering aims to provide solutions to patients who require tissue reconstruction following mastectomies or other soft tissue trauma. Mesenchymal stromal cells (MSCs) robustly differentiate into the adipogenic lineage and are attractive candidates for adipose tissue engineering. This work investigates whether pore size modulates adipogenic differentiation of MSCs toward identifying optimal scaffold pore size and whether pore size modulates spatial infiltration of adipogenically differentiated cells. To assess this, extrusion-based 3D printing is used to fabricate photo-crosslinkable gelatin-based scaffolds with pore sizes in the range of 200-600 µm. The adipogenic differentiation of MSCs seeded onto these scaffolds is evaluated and robust lipid droplet formation is observed across all scaffold groups as early as after day 6 of culture. Expression of adipogenic genes on scaffolds increases significantly over time, compared to TCP controls. Furthermore, it is found that the spatial distribution of cells is dependent on the scaffold pore size, with larger pores leading to a more uniform spatial distribution of adipogenically differentiated cells. Overall, these data provide first insights into the role of scaffold pore size on MSC-based adipogenic differentiation and contribute toward the rational design of biomaterials for adipose tissue engineering in 3D volumetric spaces.


Assuntos
Adipócitos/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Gelatina/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Gelatina/efeitos da radiação , Expressão Gênica , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Porosidade , Cultura Primária de Células , Impressão Tridimensional , Raios Ultravioleta
6.
J Mater Chem B ; 7(19): 3100-3108, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31441462

RESUMO

Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Engenharia Tecidual/métodos , Humanos
7.
J Biomed Mater Res A ; 106(11): 2827-2837, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30281904

RESUMO

Vascularization of the fracture site and cell-mediated deposition of the mineralized matrix are crucial determinants for successful bone regeneration after injury. Ceramic biomaterials such as bioactive glasses (BAGs) that release bioactive ions have shown promising results in bone defect regeneration. However, it remains unclear how the dosage and composition of bioactive ions influence the angiogenic and osteogenic behavior of primary human mesenchymal stromal cells (MSCs). Here, we show that exposure to ionic dissolution products from 1393 and 45S5 BAGs can evoke distinct angiogenic and osteogenic responses from primary MSCs in a dose- and composition-dependent manner. Significantly higher concentrations of the pro-angiogenic factors VEGF, HGF, PIGF, angiopoietin, and angiogenin were detected in conditioned media (CM) from MSCs exposed to 45S5, but not 1393, BAGs. Application of this CM to human umbilical vein endothelial cells (HUVECs) resulted in robust 2D tube formation in vitro. Osteogenic differentiation of MSCs was assessed by gene expression analysis and mineralization assays. Low concentrations (0.1% w/v) of 1393 BAGs significantly enhanced the gene expression of RUNX2 and ALP and induced an earlier onset of matrix mineralization compared to all other groups. We further tested whether simultaneous exposure to both BAGs would improve both angiogenic secretion and osteogenic differentiation of MSCs, and did not find evidence to support this hypothesis. Our results provide evidence of BAG composition-dependent enhancement of primary human MSCs' regenerative function, besides also underlining the importance of an in vitro evaluation of the dose-response relationship to translate BAG based approaches into safe and effective clinical therapies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2827-2837, 2018., 2018.


Assuntos
Materiais Biocompatíveis/farmacologia , Cerâmica/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Vidro , Humanos , Íons/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
8.
Biomaterials ; 140: 103-114, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28644976

RESUMO

Mesenchymal stromal cells (MSCs) secrete paracrine factors that play crucial roles during tissue regeneration. Whether this paracrine function is influenced by the properties of biomaterials in general, and those used for cell delivery in particular, largely remains unexplored. Here, we investigated if three-dimensional culture in distinct microenvironments - nanoporous hydrogels (mean pore size ∼5 nm) and macroporous scaffolds (mean pore size ∼120 µm) - affects the secretion pattern of MSCs, and consequently leads to differential paracrine effects on target progenitor cells such as myoblasts. We report that compared to MSCs encapsulated in hydrogels, scaffold seeded MSCs show an enhanced secretion profile and exert beneficial paracrine effects on various myoblast functions including migration and proliferation. Additionally, we show that the heightened paracrine effects of scaffold seeded cells can in part be attributed to N-cadherin mediated cell-cell interactions during culture. In hydrogels, this physical interaction between cells is prevented by the encapsulating matrix. Functionally blocking N-cadherin negatively affected the secretion profile and paracrine effects of MSCs on myoblasts, with stronger effects observed for scaffold seeded compared to hydrogel encapsulated cells. Together, these findings demonstrate that the therapeutic potency of MSCs can be enhanced by biomaterials that promote cell-cell interactions.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Porosidade , Ratos Sprague-Dawley , Alicerces Teciduais/química
9.
J Biomed Mater Res A ; 105(10): 2772-2782, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28571113

RESUMO

Bioactive glasses (BAGs) are highly interesting materials for bone regeneration applications in orthopedic and dental defects. It is quite well known that ionic release from BAGs influences cell behavior and function. Mindful of the clinical scenario, we hypothesized that local cell populations might additionally physically interact with the implanted BAG particles and respond differently than to just the ionic stimuli. We therefore studied the biological effect of two BAG types (45S5 and 1393) applied to human mesenchymal stromal cells (hMSCs) in three distinct presentation modes: (a) direct contact; and to dissolution products in (b) 2D, and (c) 3D culture. We furthermore investigated how the dose-dependence of these BAG particles, in concentrations ranging from 0.1 to 2.5 w/v %, influenced hMSC metabolic activity, proliferation, and cell spreading. These cellular functions were significantly hampered when hMSCs were exposed to high concentrations of either glasses, but the effects were more pronounced in the 45S5 groups and when the cells were in direct contact with the BAGs. Furthermore the biological effect of 1393 BAG outperformed that of 45S5 BAG in all tested presentation modes. These outcomes highlight the importance of investigating cell-BAG interactions in experimental set-ups that recapitulate host cell interactions with BAG particles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2772-2782, 2017.


Assuntos
Materiais Biocompatíveis/metabolismo , Cerâmica/metabolismo , Células-Tronco Mesenquimais/citologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Vidro , Humanos , Íons/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo
10.
11.
Biomaterials ; 53: 502-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890747

RESUMO

Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.


Assuntos
Materiais Biocompatíveis , Músculo Esquelético/citologia , Engenharia Tecidual , Humanos , Músculo Esquelético/fisiopatologia , Alicerces Teciduais
12.
Biomaterials ; 35(33): 9068-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112936

RESUMO

Conducting polymers have found numerous applications as biomaterial components serving to effectively deliver electrical signals from an external source to the seeded cells. Several cell types including cardiomyocytes, neurons, and osteoblasts respond to electrical signals by improving their functional outcomes. Although a wide variety of conducting polymers are available, polyaniline (PANI) has emerged as a popular choice due to its attractive properties such as ease of synthesis, tunable conductivity, environmental stability, and biocompatibility. PANI in its pure form has exhibited biocompatibility both in vitro and in vivo, and has been combined with a host of biodegradable polymers to form composites having a range of mechanical, electrical, and surface properties. Moreover, recent studies in literature report on the functionalization of polyaniline oligomers with end segments that make it biodegradable and improve its biocompatibility, two properties which make these materials highly desirable for applications in tissue engineering. This review will discuss the features and properties of PANI based composites that make them effective biomaterials, and it provides a comprehensive summary of studies where the use of PANI as a biomaterial component has enhanced cellular function and behavior. We also discuss recent studies utilizing functionalized PANI oligomers, and conclude that electroactive PANI and its derivatives show great promise in eliciting favorable responses from various cell lines that respond to electrical stimuli, and are therefore effective biomaterials for the engineering of electrically responsive biological tissues and organs.


Assuntos
Compostos de Anilina/química , Materiais Biocompatíveis/química , Polímeros/química , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Condutividade Elétrica , Humanos , Propriedades de Superfície
13.
Acta Biomater ; 10(6): 2434-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561709

RESUMO

Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications.


Assuntos
Compostos de Anilina/química , Decanoatos/química , Condutividade Elétrica , Glicerol/análogos & derivados , Coração , Polímeros/química , Engenharia Tecidual , Animais , Glicerol/química , Microscopia Eletrônica de Varredura , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA