Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 16(2): 689-700, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601012

RESUMO

The excessive increase of intracellular reactive oxygen species (ROS) makes tumor cells usually in the state of oxidative stress. Although tumor cells can adapt to this state to a certain extent by upregulating antioxidant systems, the further ROS insults disrupt the transient intracellular redox balance, eventually leading to apoptosis and necrosis. Therefore, increasing the intracellular ROS level can effectively amplify the oxidative stress and induce apoptosis, which can be employed as a strategy for tumor treatment. Herein, a unique pH-responsive ROS inducing micellar system was reported in this study to specifically amplify the ROS signal in tumor cells. This micellar system was constructed by a new amphiphilic polymer, PIAThydCA, composed of poly(itaconic acid) (PIA) as the hydrophilic backbone, d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as the hydrophobic side chain, and cinnamaldehyde (CA) as the ROS-generating agent, which were linked to PIA by the pH-sensitive hydrazone bond. PIAThydCA micelles could be degraded in the intracellular acidic environment through the hydrolysis of hydrazone bond and release CA. CA and TPGS could amplify oxidative stress cooperatively to kill MCF-7 human breast cells preferentially through the mitochondrial apoptosis pathway. Therefore, we anticipate that the PIAThydCA micelles could exert great potential in anticancer therapy.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Polímeros/química , Acroleína/análogos & derivados , Acroleína/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Micelas , Oxirredução/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/farmacologia , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Biol Macromol ; 193(Pt B): 2021-2028, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767883

RESUMO

Mg alloys are increasingly being investigated as a versatile and economical alternative for developing bone repair implants because of their high mechanical strength, wide availability, adjustable structure and properties. In this study, magnesium alloy WE43 is coated on both sides with gelatin nanosphere/chitosan (GNs/CTS), a coating enhanced by incorporating simvastatin (SIM). SIM-loaded GNs/CTS coated magnesium alloy can promote the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). BMSCs and human umbilical vein endothelial cells (HUVECs) are co-cultured through transwell systems. The release of SIM from the coating is found to increase the secretion of chemokine and angiogenic factors from BMSCs, which promote the migration and tube formation of HUVECs, respectively. Bone morphogenetic protein secreted by HUVECs is seen to increase by the release of SIM from the coating, promoting the osteogenic differentiation of BMSCs. The secretion of chemokines from HUVECs promote the migration of BMSCs. The coated magnesium alloy substrate loaded with SIM is found to regulate the osteogenic differentiation of BMSCs. The study of the paracrine interaction between BMSCs and HUVECs proves that the applied coating promotes both osteogenic differentiation and vascularization, thus demonstrating a new approach for the design of bone repair materials based on magnesium alloys.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Gelatina/farmacologia , Magnésio/química , Nanosferas/química , Osteogênese/efeitos dos fármacos , Sinvastatina/farmacologia , Ligas/farmacologia , Indutores da Angiogênese/farmacologia , Osso e Ossos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura/métodos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos
3.
ACS Appl Mater Interfaces ; 11(8): 8625-8634, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30715842

RESUMO

Biodegradable polymer coatings on magnesium alloys are attractive, as they can provide corrosion resistance as well as additional functions for biomedical applications, e.g., drug delivery. A gelatin nanospheres/chitosan (GNs/CTS) composite coating on WE43 substrate was fabricated by electrophoretic deposition with simvastatin (SIM) loaded into the GNs. Apart from a sustained drug release over 28 days, an anticorrosion behavior of the coated WE43 substrates was confirmed by electrochemical tests. Both the degradation and corrosion rates of the coated substrate were significantly minimized in contrast to bare WE43. The cytocompatibility of the coated samples was analyzed  both quantitatively and qualitatively. Additionally, the osteogenic differentiation of MC3T3-E1 cells on SIM-containing coatings was assessed by measuring the expression of osteogenic genes and related proteins, alkaline phosphatase (ALP) activity, and extracellular matrix mineralization, showing that the SIM-loaded composite coating could upregulate the expression of osteogenic genes and related proteins, promote ALP activity, and enhance extracellular matrix mineralization. In summary, the SIM-loaded GNs/CTS composite coatings were able to enhance the corrosion resistance of the WE43 substrate and promote osteogenic activity, thus demonstrating a promising coating system for modifying the surface of magnesium alloys targeted for orthopedic applications.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Portadores de Fármacos/química , Magnésio/química , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Materiais Revestidos Biocompatíveis/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Gelatina/química , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Polímeros/química , Sinvastatina/química , Sinvastatina/metabolismo , Sinvastatina/farmacologia
4.
ACS Appl Mater Interfaces ; 10(14): 11529-11538, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29504741

RESUMO

Structural and compositional modifications of metallic implant surfaces are being actively investigated to achieve improved bone-to-implant bonding. In this study, a strategy to modify bulk metallic surfaces by electrophoretic deposition (EPD) of short phosphate glass fibers (sPGF) is presented. Random and aligned orientation of sPGF embedded in a poly(acrylic acid) matrix is achieved by vertical and horizontal EPD, respectively. The influence of EPD parameters on the degree of alignment is investigated to pave the way for the fabrication of highly aligned sPGF structures in large areas. Importantly, the oriented sPGF structure in the coating, owing to the synergistic effects of bioactive composition and fiber orientation, plays an important role in directional cell migration and enhanced proliferation. Moreover, gene expression of MC3T3-E1 cells cultured with different concentrations of sPGF is thoroughly assessed to elucidate the potential stimulating effect of sPGF on osteogenic differentiation. This study represents an innovative exploitation of EPD to develop textured surfaces by orientation of fibers in the macroscale, which shows great potential for directional functionalization of metallic implants.


Assuntos
Fosfatos/química , Vidro , Osteogênese , Aço Inoxidável
5.
Life Sci ; 148: 139-44, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874032

RESUMO

AIMS: The purpose of this paper was to fabricate PLLA/PCL nanofibrous scaffolds containing HAP to mimic the native bone extracellular matrix for potential applications as bone tissue engineering scaffolds materials and ultimately to help the repairing of bone defects. MATERIALS AND METHODS: PLLA (MW 200kDa), PCL (MW 80kDa), HAP, dichloromethane, N,N-dimethylformamide; α-MEM, FBS, trypsin-EDTA, penicillin G, streptomycin, ß-sodium glycerophosphate, l-ascorbic acid, dexamethasone; CCK-8, Alkaline Phosphatase Assay Kit, Mouse Osteocalcin ELISA Kit, MC3T3-E1 cells. PLLA, PCL and HAP were dissolved in the solution of DCM and DMF to fabricate nanofibrous scaffolds through electrospinning. The morphology of the scaffolds was investigated with SEM, while the diameter of the fibers, pore size and water uptake of the scaffolds were tested, respectively. TGA was carried out to verify the percentage of HAP in the composite scaffolds fabricated with different HAP concentrations. Cell count kit-8 assay, alkaline phosphatase (ALP) assay, and osteocalcin assay were applied to observe the MC3T3-E1 cells proliferation, differentiation on the composite scaffolds. KEY FINDINGS: MC3T3-E1 cells were found to grow actively on the composite scaffolds based on the results of CCK-8 assay. The level of MC3T3-E1 differentiation was evaluated through the ALP activity and osteocalcin concentration, which showed higher value with HAP containing (PLLA/PCL/HAP) than that ones without (PLLA/PCL). SIGNIFICANCE: The results demonstrated that the biocomposite PLLA/PCL/HAP nanofibrous scaffold should be a promising candidate for proliferation, differentiation and mineralization of osteoblasts, and potentially can be used for bone tissue regeneration.


Assuntos
Osso e Ossos/efeitos dos fármacos , Durapatita/administração & dosagem , Metacrilatos/administração & dosagem , Nanofibras/administração & dosagem , Poliésteres/administração & dosagem , Engenharia Tecidual/métodos , Alicerces Teciduais , Células 3T3 , Animais , Osso e Ossos/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Durapatita/química , Metacrilatos/química , Camundongos , Nanofibras/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA