Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Rev ; 124(5): 2081-2137, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38393351

RESUMO

Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.


Assuntos
Polímeros , Dispositivos Eletrônicos Vestíveis , Humanos
2.
J Nanobiotechnology ; 22(1): 446, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075467

RESUMO

Bacterial diseases are one of the most common issues that result in crop loss worldwide, and the increasing usage of chemical pesticides has caused the occurrence of resistance in pathogenic bacteria and environmental pollution problems. Nanomaterial mediated gene silencing is starting to display powerful efficiency and environmental friendliness for improving plant disease resistance. However, the internalization of nanomaterials and the physiological mechanisms behind nano-improved plant disease resistance are still rarely understood. We engineered the polyethyleneimine (PEI) functionalized gold nanoparticles (PEI-AuNPs) with fluorescent properties and ROS scavenging activity to act as siRNA delivery platforms. Besides the loading, protection, and delivery of nucleic acid molecules in plant mature leaf cells by PEI-AuNPs, its fluorescent property further enables the traceability of the distribution of the loaded nucleic acid molecules in cells. Additionally, the PEI-AuNPs-based RNAi delivery system successfully mediated the silencing of defense-regulated gene AtWRKY1. Compared to control plants, the silenced plants performed better resistance to Pseudomonas syringae, showing a reduced bacterial number, decreased ROS content, increased antioxidant enzyme activities, and improved chlorophyll fluorescence performance. Our results showed the advantages of AuNP-based RNAi technology in improving plant disease resistance, as well as the potential of plant nanobiotechnology to protect agricultural production.


Assuntos
Resistência à Doença , Ouro , Nanopartículas Metálicas , Doenças das Plantas , Pseudomonas syringae , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Ouro/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Polietilenoimina/química , Inativação Gênica , Arabidopsis/genética
3.
Small ; 17(14): e2006612, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711201

RESUMO

The adoption of neural interfacing into neurological diagnosis is severely hampered by the complex, costly, and error-prone manufacturing methods, requiring new fabrication processes and materials for flexible neural interfacing. Here a strategy for fabricating highly stretchable neural electrode arrays based on screen printing of liquid metal conductors onto polydimethylsiloxane substrates is presented. The screen-printed electrode arrays show a resolution of 50 µm, which is ideally applicable to neural interfaces. The integration of liquid metal-polymer conductor enables the neural electrode arrays to retain stable electrical properties and compliant mechanical performance under a significant (≈108%) strain. Taking advantage of its high biocompatibility, liquid metal electrode arrays exhibit excellent performance for neurite growth and long-term implantation. The stretchable electrode arrays can spontaneously conformally come in touch with the brain surface, and high-throughput electrocorticogram signals are recorded. Based on stretchable electrode arrays, real-time monitoring of epileptiform activities can be provided at different states of seizure. The method reported here offers a new fabrication strategy to manufacture stretchable neural electrodes, with additional potential utility in diagnostic brain-machine interfaces.


Assuntos
Metais , Polímeros , Encéfalo , Eletrodos
4.
Adv Healthc Mater ; 13(13): e2303967, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334004

RESUMO

Aggregation-induced emission luminogens (AIEgens) are promising photosensitizers that have exhibited excellent antibacterial ability with abundant reactive oxygen species (ROS) generation. TTCPy-PF6 and TTCPy-Br are deposited on the surface of diverse solid substrates through plasma-assistant electrostatic self-assembly. The AIEgens-covered coating can effectively eliminate different pathogenic Gram-positive (G+) bacteria and even their multidrug-resistant (MDR) mutants with negligible side effects such as cytotoxicity, hemolysis, and inflammation. Moreover, the AIEgen-coated surface can maintain high stability for long-time antibacterial usage, which is dependent on the ROS-mediated disruption of the attached bacteria. The AIEgen-based coatings with broad surface applicability have many advantages in high antibacterial ability, great biocompatibility, and low possibility of antibiotic pollution. The robust antibacterial ability and excellent biological safety of the AIEgen-based coatings would be helpful for the disinfection of medical devices.


Assuntos
Antibacterianos , Desinfecção , Fármacos Fotossensibilizantes , Antibacterianos/farmacologia , Antibacterianos/química , Desinfecção/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Camundongos , Humanos , Testes de Sensibilidade Microbiana
5.
J Nanosci Nanotechnol ; 13(6): 3868-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862420

RESUMO

The nanoparticles (NPs) provide a promising prospect for tumor therapy, and exercise is also becoming readily and accepted as a beneficial adjunct therapy to maintain or enhance quality of life in cancer patients. We investigate the antitumor efficacy of paclitaxel (PT) loaded polylactide/poly(ethylene glycol) NPs (PT-PLA/PEG NPs) under the exercise conditions. Results showed that within the first 7 days, the PT concentration in tumor maintained at a higher level in the PT-PLA/PEG NPs + exercise (PT-PLA/PEG NPs + EX) group as compared with the PT-PLA/PEG NPs group. All the phagocytosis rates of macrophages were significantly decreased below the CON in exercise group. The most significant antitumor effect was observed in PT-PLA/PEG NPs + EX group, demonstrating that the PT-PLA/PEG NPs improved the concentration of PT, and exercise could further increased its therapeutic efficiency for tumor. These researches may provide an effective means for tumor therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Lewis/metabolismo , Neoplasias Pulmonares/metabolismo , Nanopartículas , Paclitaxel/farmacologia , Condicionamento Físico Animal , Poliésteres/química , Polietilenoglicóis/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Camundongos , Paclitaxel/administração & dosagem
6.
Nat Commun ; 14(1): 6494, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838683

RESUMO

Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.


Assuntos
Músculos , Pele , Eletromiografia/métodos , Eletrodos , Tendões , Polímeros
7.
Nat Commun ; 14(1): 7392, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968319

RESUMO

Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.


Assuntos
Ascomicetos , Pontos Quânticos , Verticillium , Resistência à Doença/genética , Espécies Reativas de Oxigênio/metabolismo , Polietilenoimina , Gossypium/genética , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
8.
ACS Nano ; 16(8): 12049-12060, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35939084

RESUMO

Organic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance. However, these additives are mostly either toxic or not proven to be biocompatible. Herein, a biocompatible ionic liquid [MTEOA][MeOSO3] is demonstrated to be an effective additive to enhance the performance of PEDOT:PSS-based OECTs. The influence of [MTEOA][MeOSO3] on the conductivity, morphology, and redox process of PEDOT:PSS is investigated. The PEDOT:PSS/[MTEOA][MeOSO3]-based OECT exhibits high transconductance (22.3 ± 4.5 mS µm-1), high µC* (the product of mobility µ and volumetric capacitance C*) (283.80 ± 29.66 F cm-1 V-1 s-1), fast response time (∼40.57 µs), and excellent switching cyclical stability. Next, the integration of sodium (Na+) and potassium (K+) ion-selective membranes with the OECTs is demonstrated, enabling selective ion detection in the physiological range. In addition, flexible OECTs are designed for electrocardiography (ECG) signal acquisition. These OECTs have shown robust performance against physical deformation and successfully recorded high-quality ECG signals.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Poliestirenos , Capacitância Elétrica , Íons
9.
Adv Mater ; 33(36): e2101447, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302396

RESUMO

Existing temporary epicardial pacing wires (TPWs) are rigid and non-absorbable, such that they can cause severe complications after cardiac surgery. Here, a soft and absorbable temporary epicardial pacing wire (saTPW) for effectively correcting abnormal heart rates in a rabbit model, such as bradycardia and ventricular premature beat, is developed. The saTPW exhibits excellent conductivity, flexibility, cycling stability (>100 000 cycles), and less inflammatory response during two-month subcutaneous implantation in a rat model. The saTPW which consists of poly(l-lactide-co-ε-caprolactone) and liquid metal, can degrade about 13% (mass loss) in the rats over a two-month subcutaneous implantation. It can be absorbed over time in the body. The cytocompatibility and absorbability avoid secondary injuries caused by remaining wires which are permanently left in the body. The saTPW will provide a great platform for diagnosis and treatments in cardiovascular diseases by delivering the physiological signal and applying electrical stimulation for therapy.


Assuntos
Implantes Absorvíveis/efeitos adversos , Materiais Biocompatíveis/química , Procedimentos Cirúrgicos Cardíacos/métodos , Metais/química , Poliésteres/química , Animais , Estimulação Cardíaca Artificial , Eletrodos Implantados/efeitos adversos , Gálio/química , Humanos , Índio/química , Masculino , Polietilenotereftalatos , Coelhos , Ratos , Fatores de Risco
10.
Int J Biol Macromol ; 132: 1155-1162, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981769

RESUMO

In the present study, in order to improve the properties of nanostarch-based nanocomposite film for food packaging, a type of nanocomposite film based on corn nanostarch (CNS) as the matrix and modified cellulose nanocrystals (modified-CNCs) as the reinforcement was prepared using a solution casting method. The cellulose nanocrystals (CNCs) were modified by a two-step method in which they were initially crosslinked with citric acid, and subsequently amidated with chitosan. Then, a type of CNS/modified-CNCs nanocomposite film with different content levels of modified-CNC were prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR); X-ray Photoelectron Spectroscopy (XPS); X-Ray Diffraction (XRD); Differential Scanning Calorimetry (DSC); and Scanning Electron Microscopy (SEM). It was observed that when compared with the pure CNS film, the 8.0 wt% modified-CNCs loaded nanostarch-based nanocomposite film had displayed a 230.0% increase in tensile strength. And the moisture absorption ability had decreased by 25.6%; water vapor permeability had decreased by 87.4%; and the water contact angle value had increased by 18.1%. Also the results of this experimental study had revealed that the CNS/modified-CNCs nanocomposite film had displayed better antimicrobial activities against E. coli and S. aureus bacteria when compared with the pure CNS film.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Nanocompostos/química , Nanopartículas/química , Escherichia coli/efeitos dos fármacos , Embalagem de Alimentos , Permeabilidade , Staphylococcus aureus/efeitos dos fármacos , Vapor , Resistência à Tração
11.
Int J Nanomedicine ; 13: 2777-2788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785105

RESUMO

INTRODUCTION: Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions. MATERIALS AND METHODS: In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites. RESULTS: The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs). CONCLUSION: The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.


Assuntos
Osso e Ossos/fisiologia , Nanocompostos/química , Plectranthus/química , Engenharia Tecidual/métodos , Humanos , Teste de Materiais , Metalocenos/química , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Tempo de Tromboplastina Parcial , Polietileno/química , Álcool de Polivinil/química , Porosidade , Tempo de Protrombina , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria
12.
Toxicol Lett ; 235(3): 206-15, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25891026

RESUMO

Reactive oxygen species (ROS) in the brain plays an important role in the progression of hypertension and hydrogen peroxide (H2O2) is a major component of ROS. The aim of this study is to explore whether endogenous H2O2 changed by polyethylene glycol-catalase (PEG-CAT) and aminotriazole (ATZ) in the hypothalamic paraventricular nucleus (PVN) regulates neurotransmitters, renin-angiotensin system (RAS), and cytokines, and whether subsequently affects the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in high salt-induced hypertension. Male Sprague-Dawley rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 10 weeks. Then rats were treated with bilateral PVN microinjection of PEG-CAT (0.2 i.u./50nl), an analog of endogenous catalase, the catalase inhibitor ATZ (10nmol/50nl) or vehicle. High salt-fed rats had significantly increased MAP, RSNA, plasma norepinephrine (NE) and pro-inflammatory cytokines (PICs). In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), interleukin-1beta (IL-1ß), glutamate and NE, and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN than normal diet rats. Bilateral PVN microinjection of PEG-CAT attenuated the levels of RAS and restored the balance of neurotransmitters and cytokines, while microinjection of ATZ into the PVN augmented those changes occurring in hypertensive rats. Our findings demonstrate that ROS component H2O2 in the PVN regulating MAP and RSNA are partly due to modulate neurotransmitters, renin-angiotensin system, and cytokines within the PVN in salt-induced hypertension.


Assuntos
Amitrol (Herbicida)/farmacologia , Catalase/farmacologia , Peróxido de Hidrogênio/metabolismo , Hipertensão/induzido quimicamente , Núcleo Hipotalâmico Paraventricular/metabolismo , Polietilenoglicóis/farmacologia , Cloreto de Sódio na Dieta/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Neurotransmissores/sangue , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Anim Reprod Sci ; 149(3-4): 305-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042775

RESUMO

Sperm-mediated gene transfer (SMGT) is a promising transgenic technology that relies on the capability of sperm to internalize exogenous DNA. In marine fish, however, the interaction between sperm and exogenous DNA appears to be deficient. Here, we demonstrated significant DNase activity in the seminal plasma of the olive flounder. When incubated with naked-DNA, the spermatozoa lost their structural integrity, including the head, mitochondria and flagellum, in an incubation time-dependent manner. However, internalization of a liposome-DNA complex resulted in the structural integrity of the spermatozoa being maintained, even when using incubation times of up to 50min. We concluded that in the olive flounder, SMGT is possible by integrating liposome-DNA complexes, rather than naked-DNA alone, into the sperm. In brief, removal of the seminal plasma and packaging the exogenous DNA were necessary for successful SMGT in the olive flounder.


Assuntos
Linguado/fisiologia , Espermatozoides/citologia , Transgenes/fisiologia , Animais , Desoxirribonucleases/metabolismo , Lipossomos , Masculino , Sêmen/enzimologia , Espermatozoides/fisiologia
14.
Tissue Eng Part C Methods ; 16(3): 459-67, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19635030

RESUMO

Current methods for measuring collagen content in engineered tissues are incompatible with monitoring of collagen production because they require destruction of the tissue. We have implemented a luciferase-based strategy to monitor collagen production noninvasively. Fibrin-based tissue constructs made using vascular smooth muscle cells stably transfected with a collagen I promoter/luciferase transgene developed with collagen content comparable to control cells, but could be imaged noninvasively to follow collagen transcription during tissue growth in vitro. We showed that these cells reported collagen I production at the transcriptional level in response to the growth factor transforming growth factor-beta1 and fibrinolytic inhibition by epsilon-aminocaproic acid and that these changes were consistent with changes at the mRNA and protein levels. As these cells report collagen changes instantly and without tissue destruction, they will facilitate construct optimization using multiple stimuli to produce functional engineered tissues.


Assuntos
Materiais Biocompatíveis , Colágeno/genética , Fibrina , Músculo Liso Vascular/metabolismo , Transcrição Gênica , Sequência de Bases , Primers do DNA , Fluorescência , Humanos , Músculo Liso Vascular/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
15.
J Vis Exp ; (22)2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19229168

RESUMO

The ability to pattern proteins and other biomolecules onto substrates is important for capturing the spatial complexity of the extracellular environment. Development of microcontact printing by the Whitesides group (http://gmwgroup.harvard.edu/) in the mid-1990s revolutionalized this field by making microelectronics/microfabrication techniques accessible to laboratories focused on the life sciences. Initial implementations of this method used polydimethylsiloxane (PDMS) stamps to create patterns of functionalized chemicals on material surfaces. Since then, a range of innovative approaches have been developed to pattern other molecules, including proteins. This video demonstrates the basic process of creating PDMS stamps and uses them to pattern proteins, as these steps are difficult to accurately express in words. We focus on patterning the extracellular matrix protein fibronectin onto glass coverslips as a specific example of patterning. An important component of the microcontact printing process is a topological master, from which the stamps are cast; the raised and lowered regions of the master are mirrored into the stamp and define the final pattern. Typically, a master consists of a silicon wafer coated with photoresist and then patterned by photolithography, as is done here. Creation of masters containing a specific pattern requires specialized equipment, and is best approached in consultation with a fabrication center or facility. However, almost any substrate with topology can be used as a master, such as plastic diffraction gratings (see Reagents for one example), and such serendipitous masters provide readily available, simple patterns. This protocol begins at the point of having a master in hand.


Assuntos
Fibronectinas/química , Vidro/química , Nanotecnologia/métodos , Dimetilpolisiloxanos/química
16.
Artigo em Zh | MEDLINE | ID: mdl-16108347

RESUMO

OBJECTIVE: To study the gene expressions of human osteoblasts during the construction of tissue engineered bone with the bio-derived material. METHODS: The fetal osteoblasts were used to construct tissue engineered bone with the bio-derived material and then were cultured 2, 4, 6, 8 and 10 days in vitro. Real-time PCR analysis indicated that Cbfa 1, Osterix, Collagen type I, osteocalcin (OC) and Integrin alpha5 and beta1 were present in osteoblasts with bio-derived materials. Results The change of Cbfa1 was consistent with the change of Osterix. On 2nd day and 8th day, the expression of Osterix in experimental group was higher than that in control group, P<0.05. Collagen type I's change was consistent with change of OC expression, and its expression was higher in experimental group than that in control group on 2nd, 4th, 6th and 8th day. The Integrin expression was high all along. Conclusion The important genes can be expressed normally by integrating osteoblasts with bio-derived scaffolds. As skeleton tissue engineering scaffold, the bio-derived bone is conducive to keep the osteoblast's phenotype and differentiation with osteo-conductive ability. The osteoblast can enter proliferation stage favorably and the scaffold materials exert no effects on it. Bio-derived bone can also supply more space for cells to proliferate. The bio-derived materials promote osteoblasts adhesion.


Assuntos
Substitutos Ósseos , Osteoblastos/metabolismo , Engenharia Tecidual/métodos , Adulto , Osso e Ossos , Células Cultivadas , Colágeno Tipo I/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feto , Expressão Gênica , Humanos , Integrina alfa5beta1/genética , Osteoblastos/citologia , Osteocalcina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA