Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Oral Health ; 24(1): 536, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715009

RESUMO

BACKGROUND: Oral traumatic ulcerative lesions (OTUL) are commonly encountered in clinical practice, yet there is limited research on their clinical characteristics and traumatic etiological factors. This retrospective study aimed to analyze the age, gender, clinical characteristics, and traumatic etiological factors in a large cohort of patients with OTUL and provide valuable insights for dental clinicians to optimize patient care and prevention strategies. METHODS: A total of 1543 patients with OTUL were enrolled in this study. Age, gender, medical history, clinical characteristics and traumatic etiological factors were collected and analyzed. Logistic regression analysis was performed to determine the significance of age and gender as factors related to OTUL. RESULTS: The study revealed significant variations in clinical characteristics and traumatic etiological factors among different age groups and between genders. Logistic regression analysis demonstrated that both age and gender were significant factors related to OTUL. CONCLUSION: The clinical characteristics of OTUL and traumatic etiological factors appear to be significantly different according to age and gender. More targeted prevention strategies should be implemented for all age and gender groups.


Assuntos
Úlceras Orais , Humanos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Fatores Sexuais , Pessoa de Meia-Idade , Fatores Etários , Úlceras Orais/etiologia , Adolescente , Adulto Jovem , Idoso , Criança , Pré-Escolar , Fatores de Risco , Idoso de 80 Anos ou mais
2.
J Nanobiotechnology ; 19(1): 14, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413405

RESUMO

BACKGROUND: Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject. RESULTS: To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells. CONCLUSIONS: A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Micelas , Polímeros/química , Animais , Sobrevivência Celular , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução
3.
Sci Total Environ ; 947: 174600, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986708

RESUMO

Membrane fouling is a persistent challenge that has impeded the broader application of anaerobic membrane bioreactors (AnMBRs). To mitigate membrane fouling, between the outlet of the UASB anaerobic bioreactor and the PVDF membrane to form the anaerobic filter membrane bioreactor (AnFMBR) system. Through comprehensive experiments, the optimal pore size for cloth filters was determined to be 50 µm. A comprehensive assessment over 140 days of operation shows that the novel AnFMBR had significantly greater resistance to membrane pollution than the traditional AnMBR. The AnFMBR system membrane tank exhibited lower mixed liquor suspended solid and mixed liquor volatile suspended solid concentrations, smaller sludge particle sizes, increased hydrophilicity of sludge flocs, and optimized microbial community distribution compared to those of conventional AnMBRs. The total solids foulant accumulation rate in the AnMBR was 5.1 g/m2/day, while in the AnFMBR, the rate was 2.4 g/m2/day, marking a 53.7 % decrease in fouling rate for the AnFMBR compared with the AnMBR. This decrease indicates that integrating the filtration assembly significantly lowered the rate of solid foulant accumulation on the membrane surface, primarily by controlling the buildup of solid foulants in the cake layer, thereby alleviating membrane fouling. AnFMBR compared to AnMBR, the membrane fouling rate halved, effectively doubled the interval between membrane cleaning from seven days, as observed in the AnMBR system, to fourteen days. These findings underscore the potential of integrating cloth media filters into AnMBRs to improve operational efficiency, economic viability, and sustainability.


Assuntos
Reatores Biológicos , Filtração , Membranas Artificiais , Eliminação de Resíduos Líquidos , Filtração/métodos , Filtração/instrumentação , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Esgotos
4.
J Hazard Mater ; 465: 133278, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38118199

RESUMO

Soil microplastics (MPs) have attracted widespread attention recently. Most studies have explored how soil MPs affect the soil's physicochemical parameters, matter circulation, and soil microbial community assembly. Similarly, a key concern in agricultural development has been the use of phosphorus (P) fertiliser, which is essential for plant health and development. However, the relationship between MPs and phosphate fertilisers and their effects on the soil environment and plant growth remains elusive. This study assessed the influence of adding low-density polyethylene MPs (1%) with different phosphate fertiliser application rates on microbial communities and rice biomass. Our results showed that MPs changed the structure of soil bacterial and phoD-harbouring microbial communities in the treatment with P fertiliser at the same level and suppressed the interactions of phoD-harbouring microorganisms. In addition, we found that MPs contamination inhibited rice growth; however, the inclusion of P fertiliser in MP-contaminated soils reduced the inhibitory action of MPs on rice growth, probably because the presence with P fertiliser promoted the uptake of NO3--N by rice in MP-contaminated soils. Our results provide further insights into guiding agricultural production, improving agricultural management, and rationally applying phosphate fertilisers in the context of widespread MPs pollution and global P resource constraints.


Assuntos
Oryza , Solo , Solo/química , Microplásticos , Plásticos , Fertilizantes/análise , Oryza/microbiologia , Fósforo , Fosfatos
5.
Huan Jing Ke Xue ; 43(10): 4789-4800, 2022 Oct 08.
Artigo em Zh | MEDLINE | ID: mdl-36224164

RESUMO

The inoculation of antibiotic-degrading bacteria into manure could promote the removal of antibiotics during composting. However, knowledge on the impact of inoculating these antibiotic-degrading bacteria on the composting process and indigenous microbial community succession is still limited. This study assessed the antibiotic removal efficiency in pig manure after inoculating a microbial inoculum with antibiotic-degrading bacteria as the key component. The effect of inoculating this microbial inoculum on the physicochemical dynamics and the succession of the manure bacterial community during composting was also analyzed. The results showed that the antibiotic degradation in pig manure reached 81.95% after inoculating the microbial inoculum. When compared with that in the control, the total concentration of antibiotic residues in manure with the microbial agent inoculated was decreased by 42.18%. During composting, inoculating the microbial inoculum accelerated the temperature rise of compost, favored water loss, and alleviated the release of NH3 and H2S. Moreover, the total nutrient content (nitrogen, phosphorus, and potassium) in the final compost and the germination index of radish seeds increased by 6.80% and 68.33%, respectively, after inoculating this microbial inoculum. Furthermore, inoculating the microbial inoculum increased the content of stable organic carbon in the final compost and decreased the content of recalcitrant substances such as cellulose and hemicellulose. The analysis of the manure bacterial community showed that inoculating the microbial inoculum increased the relative abundances of Actinomycetes and Firmicutes in the compost. In particular, the thermophilic bacteria that was positively related to the compost temperature was increased significantly (P<0.01) after inoculating the microbial inoculum, whereas the relative abundance of pathogenic bacteria was correspondingly decreased. Network analysis of the bacterial coexistence pattern showed that inoculating this microbial inoculum also changed the interaction pattern of indigenous manure bacterial communities, which greatly reduced the complexity and connectivity of the bacterial interaction and improved the ecological relationship between beneficial bacteria and other bacterial communities. The effect of this microbial inoculum on the interaction with manure bacterial community laid a foundation for the establishment of a new and healthier composting bacterial community. This study provides a scientific basis for the application and development of multifunctional antibiotic-degrading microbial agents in manure treatments.


Assuntos
Compostagem , Animais , Antibacterianos/análise , Bactérias , Carbono , Celulose , Esterco/microbiologia , Nitrogênio/análise , Fósforo , Potássio , Solo , Suínos , Água/análise
6.
Talanta ; 186: 513-520, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29784395

RESUMO

As one of the most common post-translational modifications, protein N-glycosylation precipitates in many important biological processes and has closely correlations with the occurrence and progression of multiple diseases. Plasma exosomes secreted by cells contain various bioactive N-glycoproteins which may serve as potential biomarkers for early disease diagnosis and treatment. However, the protein N-glycosylation profile in human plasma exosome is largely unknown, due to the technical challenges in glycoprotein identification. Signals of the rare N-glycoproteins/N-glycopeptides are severely suppressed by the abundant coexisting non-glycosylated counterparts in mass spectrometry analysis. Therefore, specific enrichment of N-glycoprotein/glycopeptide is a prerequisite for large scale N-glycosylation profiling. In this work, we developed a hydrazide functionalized thermosensitive polymer for efficient enrichment and in-depth identification of protein N-glycosylation in human plasma exosome by mass spectrometry. The polymer chains completely dissolve in the enrichment system to form a homogeneous solution. Therefore, efficient covalent coupling between the N-glycoprotein/glycopeptide and the polymer chain is achieved, due to the reduced interfacial mass transfer resistance and the densely packed accessible functional groups on the polymer chains. Furthermore, the thermosensitive polymer can be easily precipitated and recovered by simply rising the system temperature to above 34 °C. As a result, 329 N-glycosylation sites corresponding to 180 N-glycoproteins were enriched and identified from plasma exosomes of glioma patients and healthy subjects using the thermosensitive polymer. By quantitative comparison, we found 26 N-glycoproteins significantly changed between the glioma patients and the healthy subjects, demonstrating the potential of this new strategy for N-glycoproteome research of plasma exosome and biomarker discovery.


Assuntos
Exossomos/química , Glicopeptídeos/sangue , Glicoproteínas/sangue , Hidrazinas/química , Polímeros/química , Temperatura , Humanos , Estrutura Molecular , Polímeros/síntese química
7.
Chemosphere ; 169: 586-595, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27902965

RESUMO

In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions.


Assuntos
Modelos Teóricos , Oxigênio/análise , Esgotos/química , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Difusão , Floculação , Microeletrodos , Oxigênio/química , Polímeros/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA