Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(7): 888-894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169976

RESUMO

Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).


Assuntos
Gases , Estruturas Metalorgânicas , Peso Molecular , Polietilenoimina , Polímeros
2.
Environ Sci Technol ; 57(37): 13980-13990, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37668438

RESUMO

The rise of electronics inevitably induced the co-pollution of novel brominated flame retardants (NBFRs) and microplastics (MPs). However, studies on how they interact to influence their bioavailability are scarce. Here, we explored the influence mechanism of acrylonitrile butadiene styrene (ABS)-MPs on the bioaccumulation of decabromodiphenyl ethane (DBDPE) in soil-earthworm microcosms. The influence exhibited a temporal pattern characterized by short-term inhibition and long-term promotion. After 28 days of exposure, DBDPE bioaccumulation in a co-exposure (10 mg kg-1 DBDPE accompanied by 1000 mg kg-1 ABS-MPs) was 2.61 times higher than that in a separate exposure. The adsorption process in the soil, intestines, and mucus introduced DBDPE-carried MPs, which had a higher concentration of DBDPE than the surrounding soil and directly affected the bioavailability of DBDPE. MP-pre-exposure (100, 1000, and 10000 mg kg-1) reduced epidermal soundness, mucus secretion, and worm cast production. This eventually promoted the contact between earthworm and soil particles and enhanced the DBDPE of earthworm tissue by 6%-61% in the next DBDPE-postexposure period, confirming that MPs increased DBDPE bioaccumulation indirectly by impairing the earthworm health. This study indicates that MPs promoted DBDPE bioaccumulation via adsorption and self-toxicity, providing new insight into the combined risk of MPs and NBFRs.


Assuntos
Acrilonitrila , Retardadores de Chama , Oligoquetos , Animais , Bioacumulação , Microplásticos , Plásticos , Solo
3.
Sci Total Environ ; 912: 168792, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38000747

RESUMO

Both microplastics and Cr(VI) potentially threaten soil and crops, but little is known about their interaction in the soil-plant system. This study investigated the effect and mechanism of polyethylene (PE), polyamide (PA), and polylactic acid (PLA) microplastics on Cr bioaccumulation and toxicity in a Cr(VI) contaminated soil-cucumber system during the lifecycle. The results show that microplastics had a greater effect on Cr accumulation in cucumber roots, stems, and leaves than in fruits. PE microplastics increased, but PA and PLA microplastics decreased the Cr accumulation in cucumber. Microplastics, especially high-dose, small, and aged microplastics, exacerbated the effects of accumulated Cr in cucumber on fresh weight and fruit yield. The nutrient contents in fruits except soluble sugars were reduced by microplastics. The random forest regression model shows that the microplastic type was the most important factor causing changes in the soil-cucumber system except for Cr(VI) addition. Under Cr(VI) and microplastic co-exposure, bacteria that could simultaneously tolerate Cr(VI) stress and degrade microplastics were enriched in the rhizosphere soil. The partial least squares path model shows that microplastics reduced the beneficial effect of the bacterial community on cucumber growth. Microplastics, especially PLA microplastics, alleviated the adverse effects of Cr(VI) stress on root metabolism.


Assuntos
Cromo , Cucumis sativus , Microplásticos , Plásticos , Frutas , Rizosfera , Solo , Bactérias , Poliésteres
4.
Sci Total Environ ; 889: 164303, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211097

RESUMO

Little is known about how brominated flame retardants (NBFRs) and microplastics (MPs) co-pollution influences soil organisms. Here, we investigated the impacts of acrylonitrile butadiene styrene (ABS)-MPs in soil on the 28-d dynamic bioaccumulation, tissue damage, and transcriptional responses of decabromodiphenyl ethane (DBDPE) in Eisenia fetida by simulating different pollution scenarios (10 mg kg-1 DBDPE, 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-MPs, and 10 mg kg-1 DBDPE accompanied by 0.1 % ABS-resin). The results show ABS resin did not influence DBDPE bioaccumulation or distribution, but ABS-MPs, particularly 74-187 µm size of MPs, prolonged DBDPE equilibrium time and significantly promoted DBDPE bioaccumulation in tissue (1.76-2.38 folds) and epidermis (2.72-3.34 folds). However, ABS-MPs and ABS-resin reduced DBDPE concentrations of intestines by 22.2-30.6 % and 37.3 %, respectively. DBDPE-MPs caused more serious epidermis and intestines damages than DBDPE. Additionally, compared to the control, DBDPE significantly up-regulated 1957 genes and down-regulated 2203 genes; meanwhile, DBDPE-MPs up-regulated 1475 genes and down-regulated 2231 genes. DBDPE and DBDPE-MPs both regulated lysosome, phagosome, and apoptosis as the top 3 enriched pathways, while DBDPE-MPs specifically regulated signaling pathways and compound metabolism. This study demonstrated that the presence of ABS-MPs aggravated the biotoxicity of DBDPE, providing scientific information for assessing the ecological risks of MPs and additives from e-waste in soil.


Assuntos
Acrilonitrila , Oligoquetos , Animais , Microplásticos , Plásticos/toxicidade , Acrilonitrila/toxicidade , Bioacumulação , Butadienos/toxicidade , Poliestirenos/toxicidade , Solo
5.
Sci Total Environ ; 862: 160909, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526185

RESUMO

Decabromodiphenyl ethane (DBDPE) and microplastics (MPs), such as fossil-based polymers polyethylene (PE), polypropylene (PP), and bio-based plastics polylactic acid (PLA) are abundant in e-waste dismantling areas. However, the information on the effects of DBDPE combined with MPs (DBDPE-MPs) on earthworms is still limited. In this study, we explored the impacts of DBDPE-MPs on neurotoxic biomarkers, tissue damage, and transcriptomics of Eisenia fetida by simulating different exposure patterns of 10 mg kg-1 DBDPE and 10 mg kg-1 DBDPE-MPs (PLA, PP, and PE). Results showed that the activities of acetylcholinesterase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, carboxylate enzyme, and the contents of calcium and glutamate were significantly stimulated. DBDPE-MP co-exposure caused more severe damage to the epidermis, muscles, and tissues. Transcriptomic analysis revealed that differentially expressed genes (DEGs) of DBDPE-MPs were mainly related to inflammation, the immune system, digestive system, endocrine system, and metabolism. DBDPE and PP-MPs had similar influences on immunity and metabolism. However, DBDPE-PLA and DBDPE-PE further affected the endocrine system and signaling pathways. Specific DEGs showed that detoxification systems in the case of MPs were significantly upregulated. The study indicated that MPs exacerbated DBDPE toxicity in the nervous system, epidermis, and gene regulation of E. fetida, helping to assess the ecological risks of e-wastes and microplastics in soil.


Assuntos
Microplásticos , Oligoquetos , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Polipropilenos/toxicidade , Oligoquetos/metabolismo , Acetilcolinesterase/metabolismo , Poliésteres , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA