Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403284

RESUMO

Bamboo-plastic composites (BPCs) as new biomass-plastic composites have recently attracted much attention. However, weak mechanical performance and high moisture absorption as well as low thermal stability greatly limit their industrial applications. In this context, different amounts of halloysite nanotubes (HNTs) were used as a natural reinforcing filler for BPCs. It was found that the thermal stability of BPCs increased with increasing HNT contents. The mechanical strength of BPCs was improved with the increase in HNT loading up to 4 wt% and then worsened, while the impact strengths were slightly reduced. Low HNT content (below 4 wt%) also improved the dynamic thermomechanical properties and reduced the water absorption of the BPCs. Morphological studies confirmed the improved interfacial compatibility of the BPC matrix with 4 wt% HNT loading, and high-concentration HNT loading (above 6 wt%) resulted in easy agglomeration. The results highlight that HNTs could be a feasible candidate as nanoreinforcements for the development of high-performance BPCs.


Assuntos
Argila/química , Nanotubos/química , Plásticos/química , Sasa/química , Biomassa , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanotubos/ultraestrutura , Temperatura , Água/química
2.
Int J Biol Macromol ; 265(Pt 1): 130894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490388

RESUMO

Bamboo fibers (BF), as an important sustainable natural material, are becoming a hot alternative to synthetic fibers for the reinforcement of polypropylene (PP)-based composites. However, the weak interfacial compatibility between BF and PP as matrix and their inherent flammability limit the practical application of BF/PP composites (BPC). Here, a fire-safe BPC was fabricated by constructing flame-retardant interfacial layers containing tannic acid (TA)-Fe3+ complex and halloysite nanotubes (HNTs) on the fiber matrix followed by a hot-pressing process. The results showed that the interfacial chelating of TA with Fe3+ improved the dispersion of HNTs on the fibers and the interfacial interactions within the fiber matrix, resulting in the as-fabricated composite with significantly improved mechanical properties and water resistance. In addition, the flame-retardant composite exhibited higher thermal stability and enhanced residual char content. Moreover, the composite possessed significant flame-retardant performances with a reduction of 23.75 % in the total heat release and 32.44 % in the total smoke production, respectively, owing to the flame retarding in gaseous phase and condensed phase of TA-Fe3+@HNTs layers. This work offers a green and eco-friendly strategy to address the inherent problems of BPC material in terms of fire safety and interfacial compatibility, thus broadening their applications in the automotive interior and construction industries.


Assuntos
Indústria da Construção , Retardadores de Chama , Nanotubos , Polifenóis , Argila , Polipropilenos
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(10): 1977-80, 2007 Oct.
Artigo em Zh | MEDLINE | ID: mdl-18306776

RESUMO

Lignin is one of the main components of lignocellulosic materials. The main purpose of wood cooking and bleaching is to remove lignin by chemical agent in paper industry. Whereas the lignin content shows wide variations depending on its tree specie, site condition, part and so on, it is essential to analyze the lignin content of different raw material. The aim of this paper is to develop a rapid near infrared (NIR) reflectance spectroscopic method to characterize the Klason lignin content of bamboo. Fifty four samples from three growth years, two positions along the longitudinal directions and three positions along the radial directions within a bamboo pole were prepared. The Klason lignin contents of 54 samples were analyzed according to traditional chemical method, the spectra of these samples were collected by NIR in the range of 350 to 2500 nm, and the relationship between the lignin content and the spectra of these samples was established by multivariate statistical technique. After second derivative pretreatment of raw spectra, the Klason lignin contents of the bamboo samples were quantified using partial least-squares statistical analysis (PLS1) and full cross validation in the range of 1011-1675 nm and 1930-2488 nm. High coefficients of correlation (r) were obtained between the predicted NIR results and those obtained from traditional chemical method. The correlation coefficient of calibration model and prediction model was 0.99 and 0.97, respectively. The standard error of calibration (SEC) and standard error of prediction (SEP) was 0.36% and 0.59%, respectively. It was found that the lignin content in bamboo could be determined rapidly with reasonable accuracy by the NIR method.


Assuntos
Bambusa/química , Lignina/análise , Extratos Vegetais/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA