Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(13): e2106863, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076167

RESUMO

Carbonized polymer dots (CPDs) have received tremendous attention during the last decade due to their excellent fluorescent properties and catalytic performance. Doping CPDs with transition metal atoms accelerates the local electron flow in CPDs and improves the fluorescent properties and catalytic performance of the CPDs. However, the binding sites and the formation mechanisms of the transition-metal-atom-doped CPDs remain inconclusive. In this work, Mn2+ -ion-doped CPDs (Mn-CPDs) are synthesized by the hydrothermal method. The Mn2+ ions form MnO bonds that bridge the sp2 domains of carbon cores and increases the effective sp2 domains in the Mn-CPDs, which redshifts the fluorescence emission peak of the Mn-CPDs slightly. The Mn2+ ions form covalent bonds in the CPDs and remedy the oxygen vacancies of the CPDs, which cuts off the non-radiative-recombination process of the Mn-CPDs and increases the quantum yield of the Mn-CPDs to 70%. Furthermore, the MnO bonds accelerate the electron flow between adjacent sp2 domains and enhances the electron transport in the Mn-CPDs. Thus, the Mn-CPDs demonstrate excellent catalytic performance to activate hydrogen peroxide (H2 O2 ) and produce hydroxyl radicals (•OH) to degrade methylene blue (MB) and rhodamine B (RhB).


Assuntos
Polímeros , Pontos Quânticos , Carbono/química , Transporte de Elétrons , Fluorescência , Polímeros/química , Pontos Quânticos/química
2.
J Colloid Interface Sci ; 613: 547-553, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35063786

RESUMO

Carbon dots (CDs) emerge as promising luminescent materials for potential applications in optoelectronics on basis of their merits including low cost, eco-friendliness and strong, color-tunable photoluminescence (PL). However, the research on solid-state emissive CDs is still at the primary stage because of the aggregation-caused quenching (ACQ) of PL and their poor film-formation ability. In this work, we produce CDs with branched-polyethylenimine (b-PEI) chemically functionalized on the surfaces. The thus newly synthesized P-CDs successfully overcome the bottleneck of ACQ effect and display efficient red and NIR emission in aggregate state. Under the excitation of 520 nm, a strong red emission (maxima of 640 nm) with a high photoluminescence quantum yield (PLQY) of 21% was observed for the P-CDs in neat film. Moreover, this design strategy endows the P-CDs with good film-formation ability via solution spin-coating, which significantly increases its value for the film-based optoelectronic devices.


Assuntos
Carbono , Pontos Quânticos , Luminescência , Polietilenoimina
4.
ACS Appl Mater Interfaces ; 9(4): 3419-3431, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067486

RESUMO

Photodynamic therapy (PDT) is a promising treatment modality for clinical cancer therapy. However, the therapeutic effect of PDT is strongly dependent on the property of photosensitizer. Here, we developed photo-cross-linkable semiconductor polymer dots doped with photosensitizer Chlorin e6 (Ce6) to construct a nanoparticle platform for photodynamic therapy. Photoreactive oxetane groups were attached to the side chains of the semiconductor polymer. After photo-cross-linking reaction, the Ce6-doped Pdots formed an interpenetrated structure to prevent Ce6 leaching out from the Pdot matrix. Spectroscopic characterizations revealed an efficient energy transfer from the polymer to Ce6 molecules, resulting in amplified generation of singlet oxygen. We evaluated the cellular uptake, cytotoxicity, and photodynamic effect of the Pdots in gastric adenocarcinoma cells. In vitro photodynamic experiments indicated that the Ce6-doped Pdots (∼10 µg/mL) effectively killed the cancer cells under low dose of light irradiation (∼60 J/cm2). Furthermore, in vivo photodynamic experiments were carried out in tumor-bearing nude mice, which indicated that the Pdot photosensitizer apparently suppressed the growth of solid tumors. Our results demonstrate that the photo-cross-linkable Pdots doped with photosensitizer are promising for photodynamic cancer treatment.


Assuntos
Oxigênio Singlete/química , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polímeros , Porfirinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA