Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 20(4)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37369197

RESUMO

Neuropixels probes have become a crucial tool for high-density electrophysiological recordings. Although most research involving these probes is in acute preparations, some scientific inquiries require long-term recordings in freely moving animals. Recent reports have presented prosthesis designs for chronic recordings, but some of them do not allow for probe recovery, which is desirable given their cost. Others appear to be fragile, as these articles describe numerous broken implants.Objective.This fragility presents a challenge for recordings in rats, particularly in epilepsy models where strong mechanical stress impinges upon the prosthesis. To overcome these limitations, we sought to develop a new prosthesis for long-term electrophysiological recordings in healthy and epileptic rats.Approach.We present a new prosthesis specifically designed to protect the probes from strong shocks and enable the safe retrieval of probes after experiments.Main results.This prosthesis was successfully used to record from healthy and epileptic rats for up to three weeks almost continuously. Overall, 10 out of 11 probes could be successfully retrieved with a retrieval and reuse success rate of 91%.Significance.Our design and protocol significantly improved previously described probe recycling performances and prove usage on epileptic rats.


Assuntos
Membros Artificiais , Epilepsia , Ratos , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Polímeros
2.
J Neural Eng ; 15(6): 065001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30132444

RESUMO

OBJECTIVE: Neural electrophysiology is often conducted with traditional, rigid depth probes. The mechanical mismatch between these probes and soft brain tissue is unfavorable for tissue interfacing. Making probes compliant can improve biocompatibility, but as a consequence, they become more difficult to insert into the brain. Therefore, new methods for inserting compliant neural probes must be developed. APPROACH: Here, we present a new bioresorbable shuttle based on the hydrolytically degradable poly(vinyl alcohol) (PVA) and poly(lactic-co-glycolic acid) (PLGA). We show how to fabricate the PVA/PLGA shuttles on flexible and thin parylene probes. The method consists of PDMS molding used to fabricate a PVA shuttle aligned with the probe and to also impart a sharp tip necessary for piercing brain tissue. The PVA shuttle is then dip-coated with PLGA to create a bi-layered shuttle. MAIN RESULTS: While single layered PVA shuttles are able to penetrate agarose brain models, only limited depths were achieved and repositioning was not possible due to the fast degradation. We demonstrate that a bilayered approach incorporating a slower dissolving PLGA layer prolongs degradation and enables facile insertion for at least several millimeters depth. Impedances of electrodes before and after shuttle preparation were characterized and showed that careful deposition of PLGA is required to maintain low impedance. Facilitated by the shuttles, compliant parylene probes were also successfully implanted into anaesthetized mice and enabled the recording of high quality local field potentials. SIGNIFICANCE: This work thereby presents a solution towards addressing a key challenge of implanting compliant neural probes using a two polymer system. PVA and PLGA are polymers with properties ideal for translation: commercially available, biocompatible with FDA-approved uses and bioresorbable. By presenting new ways to implant compliant neural probes, we can begin to fully evaluate their chronic biocompatibility and performance compared to traditional, rigid electronics.


Assuntos
Materiais Biocompatíveis , Eletrodos Implantados , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Álcool de Polivinil/química , Implantes Absorvíveis , Animais , Encéfalo , Impedância Elétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Adv Healthc Mater ; 5(24): 3094-3098, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27885829

RESUMO

Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros/química , Poliestirenos/química , Eletrofisiologia/métodos , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Esterilização/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA