Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chem Rec ; 22(7): e202100326, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35253984

RESUMO

Plastics around the globe have been a matter of grave concern due to the unavoidable habits of human mankind. Taking waste statistics in India for the year 2019-20 into account, the data of 60 major cities show that the generation of plastic waste stands tall at around 26,000 tonnes/day, of which only about 60 % is recycled. A majority of the non-recycled plastic waste is petrochemical-based packaging materials that are non-biodegradable in nature. Vegetative/food waste is another global issue, evidenced by vastly populated countries such as China and India accounting for 91 and 69 tonnes of food wastage, respectively in 2019. The mitigation of plastic packaging issues has led to key scientific developments, one of which is biodegradable materials. However, there is a way that these two waste-related issues can be fronted as the analogy of "taking two shots with the same arrow". The presence of various bio-compounds such as proteins, cellulose, starch, lipids, and waxes, etc., in food and vegetative waste, creates an opportunity for the development of biodegradable packaging films. Although these flexible packaging films have limitations in terms of mechanical, permeation, and moisture absorption characteristics, they can be fine-tuned in order to convert the biobased raw material into a realizable packaging product. These strategies could work in replacing petrochemical-based non-biodegradable packaging plastics which are used in enormous quantities for various household and commercial packaging applications to combat the ever-increasing pollution in highly populated countries. This paper presents a systematic review based on modern scientific tools of the literature available with a major emphasis on the past decade and aims to serve as a standard resource for the development of biodegradable packaging films from food/vegetative waste.


Assuntos
Alimentos , Eliminação de Resíduos , Humanos , Plásticos , Reciclagem
2.
Chem Rec ; 22(11): e202200186, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959940

RESUMO

Plastics have been an indispensable material of choice in automobiles with wide range of applications such as interior, exterior, under the hood, and lighting/wiring applications. The prime motive of inclusion of these materials is increase in fuel efficiency and reduction in carbon footprint by replacing the energy intensive metallic counterparts. The current decade i. e., the 2020s has seen a recent surge in the sales of electronic vehicles. Although these numbers are promising, the growth in the rest of the parts of the world is not encouraging. It is primarily due to the skepticism involving battery life and efficiency, profitability, and environmental footprint when compared to conventional and hybrid vehicles. Also, a more concerted effort is needed in the lagging areas in order to install the required infrastructure. The emergence of plastics in the development and acceptance of e-vehicles is going to be pivotal especially when the efficiency and profitability are considered as they give the required freedom to the engineers for the design and development of various parts and sizes by replacing the bulkier and more dense materials. Also, the research on bionanocomposites has received great interest from the research community due to their versatility in application along with their eco-friendly nature throughout the lifecycle starting from feedstock up to end-of-life treatment. This review paper will be one of its kind to present a critical review of the recent developments of polymers suitable for use in e-vehicles. Also, a comprehensive discussion comprising of newer research areas for polymers in their use for e-vehicles will be presented.


Assuntos
Automóveis , Polímeros , Eletricidade , Fontes de Energia Elétrica , Plásticos
3.
Nanoscale ; 7(44): 18671-6, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26498866

RESUMO

Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.


Assuntos
Adenosina/química , DNA Catalítico/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA