Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(2): 2371-2381, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33404209

RESUMO

This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 µm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 µm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.


Assuntos
Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos , Poliésteres/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Cápsulas/química , Linhagem Celular , Doxiciclina/administração & dosagem , Doxiciclina/farmacocinética , Composição de Medicamentos/instrumentação , Desenho de Equipamento , Células HeLa , Humanos , Camundongos , Tamanho da Partícula , Impressão Tridimensional/instrumentação
2.
Nanoscale ; 12(14): 7735-7748, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211625

RESUMO

Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery.


Assuntos
Cápsulas/química , Dexametasona/metabolismo , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Espécies Reativas de Oxigênio/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/química , Dexametasona/farmacologia , Liberação Controlada de Fármacos , Compostos Férricos/química , Humanos , Campos Magnéticos , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA