Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 50(4): 374-385, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094979

RESUMO

The proteomes of ordered and disordered lipid microdomains in rat liver microsomes from control and phenobarbital (PB)-treated rats were determined after solubilization with Brij 98 and analyzed by tandem mass tag (TMT)-liquid chromatography-mass spectrometry (LC-MS). This allowed characterization of the liver microsomal proteome and the effects of phenobarbital-mediated induction, focusing on quantification of the relative levels of the drug-metabolizing enzymes._The microsomal proteome from control rats was represented by 333 (23%) proteins from ordered lipid microdomains, 517 (36%) proteins from disordered lipid domains, and 587 (41%) proteins that uniformly distributed between lipid microdomains. Most enzymes related to drug metabolism were mainly localized in disordered lipid microdomains. However, cytochrome P450 (CYP) 1A2, multiple forms of CYP2D, and several forms of UDP glucuronosyltransferases (UGT) 1A1 and 1A6) localized to ordered lipid microdomains. Other drug-metabolizing enzymes, including several forms of cytochromes P450, were uniformly distributed between the ordered and disordered regions. The redox partners, NADPH-cytochrome P450 reductase and cytochrome b5, localized to disordered microdomains. PB induction resulted in only modest changes in protein localization. Less than five proteins were variably associated with the ordered and disordered membrane microdomains in PB and control microsomes. PB induction was associated with fewer proteins localizing in the disordered membranes and more being uniformly distributed or localized to ordered domains. Ingenuity Pathway Analysis (IPA) was used to ascertain the effect of PB on cellular pathways, resulting in attenuation of pathways related to energy storage/utilization and overall cellular signaling and an increase in those related to degradative pathways. SIGNIFICANCE STATEMENT: This work identifies the lipid microdomain localization of the proteome from control and phenobarbital-induced rat liver microsomes. Thus, it provides an initial framework to understand how lipid/protein segregation influences protein-protein interactions in a tissue extract commonly used for studies in drug metabolism and uses bioinformatics to elucidate the effects of phenobarbital induction on cellular pathways.


Assuntos
Lipídeos de Membrana , Microssomos Hepáticos , Animais , Biologia Computacional , Sistema Enzimático do Citocromo P-450/metabolismo , Indução Enzimática , Lipídeos de Membrana/metabolismo , Microssomos Hepáticos/metabolismo , Fenobarbital/metabolismo , Fenobarbital/farmacologia , Óleos de Plantas , Polietilenoglicóis , Proteômica , Ratos
2.
Biochem J ; 464(2): 241-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25236845

RESUMO

Cytochrome P450 (P450) function is dependent on the ability of these enzymes to successfully interact with their redox partners, NADPH-cytochrome P450 reductase (CPR) and cytochrome b5, in the endoplasmic reticulum (ER). Because the ER is heterogeneous in lipid composition, membrane microdomains with different characteristics are formed. Ordered microdomains are more tightly packed, and enriched in saturated fatty acids, sphingomyelin and cholesterol, whereas disordered regions contain higher levels of unsaturated fatty acids. The goal of the present study was to determine whether the P450 system proteins localize to different regions of the ER. The localization of CYP1A2, CYP2B4 and CYP2E1 within the ER was determined by partial membrane solubilization with Brij 98, centrifugation on a discontinuous sucrose gradient and immune blotting of the gradient fractions to identify ordered and disordered microdomains. CYP1A2 resided almost entirely in the ordered regions of the ER with CPR also localized predominantly to this region. CYP2B4 was equally distributed between the ordered and disordered domains. In contrast, CYP2E1 localized to the disordered membrane regions. Removal of cholesterol (an important constituent of ordered domains) led to the relocation of CYP1A2, CYP2B4 and CPR to the disordered regions. Interestingly, CYP1A1 and CYP1A2 localized to different membrane microdomains, despite their high degree of sequence similarity. These data demonstrate that P450 system enzymes are organized in specific membrane regions, and their localization can be affected by depletion of membrane cholesterol. The differential localization of different P450 in specific membrane regions may provide a novel mechanism for modulating P450 function.


Assuntos
Hidrocarboneto de Aril Hidroxilases/química , Citocromo P-450 CYP1A2/química , Citocromo P-450 CYP2E1/química , Retículo Endoplasmático/química , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Família 2 do Citocromo P450 , Retículo Endoplasmático/enzimologia , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Óleos de Plantas/farmacologia , Polietilenoglicóis/farmacologia , Coelhos
3.
Drug Metab Dispos ; 37(4): 857-64, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19131520

RESUMO

Heme oxygenase (HO) catalyzes heme degradation in a reaction requiring NADPH-cytochrome P450 reductase (CPR). Although most studies with HO used a soluble 30-kDa form, lacking the C-terminal membrane-binding region, recent reports show that the catalytic behavior of this enzyme is very different if this domain is retained; the overall activity was elevated 5-fold, and the K(m) for CPR decreased approximately 50-fold. The goal of these studies was to accurately measure HO activity using a coupled assay containing purified biliverdin reductase (BVR). This allows measurement of bilirubin formation after incorporation of full-length CPR and heme oxygenase-1 (HO-1) into a membrane environment. When rat liver cytosol was used as the source of partially purified BVR, the reaction remained linear for 2 to 3 min; however, the reaction was only linear for 10 to 30 s when an equivalent amount of purified, human BVR (hBVR) was used. This lack of linearity was not observed with soluble HO-1. Optimal formation of bilirubin was achieved with concentrations of bovine serum albumin (0.25 mg/ml) and hBVR (0.025-0.05 microM), but neither supplement increased the time that the reaction remained linear. Various concentrations of superoxide dismutase had no effect on the reaction; however, when catalase was included, the reactions were linear for at least 4 to 5 min, even at high CPR levels. These results not only show that HO-1-generated hydrogen peroxide leads to a decrease in HO-1 activity but also provide for a chemically defined system to be used to examine the function of full-length HO-1 in a membrane environment.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Proteínas de Membrana/metabolismo , Animais , Sequência de Bases , Catalase/metabolismo , Primers do DNA , Humanos , Lipossomos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Superóxido Dismutase/metabolismo
4.
Methods Mol Biol ; 606: 11-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20013386

RESUMO

Although lipids are essential for the optimal activity of the cytochromes P450 monooxygenase system, relatively little is known about the membrane environment in which these enzymes function. One approach used to mimic the structural arrangement of lipids and enzymes within the endoplasmic reticulum is to physically incorporate the cytochromes P450 and their redox partners in a vesicle bilayer of phospholipids. Several methods have been devised for this purpose. This chapter describes a method in which the P450 monooxygenase system is incorporated by first, solubilizing the enzymes and lipid with sodium glycocholate. After the protein and lipid aggregates are dispersed, the detergent is removed by adsorption using BioBeads SM-2 resin which leads to the formation of bilayer vesicles of phospholipid containing incorporated cytochrome P450 and NADPH cytochrome P450 reductase. This procedure requires relatively a short preparation time, provides concentrated reconstituted systems that can be used in a wide range of applications, allows for several enzyme samples to be prepared simultaneously so that different conditions can be compared, and results in minimal loss of active enzyme.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Enzimas Imobilizadas/química , Lipossomos/química , NADPH-Ferri-Hemoproteína Redutase/química , Adsorção , Animais , Ácido Glicocólico/química , Ácido Glicocólico/isolamento & purificação , Humanos , Lipídeos/química , Solubilidade
5.
Drug Metab Dispos ; 34(4): 660-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16415125

RESUMO

Two methods (cholate dialysis and cholate gel filtration) used to incorporate cytochromes P450 (P450s) and reductase into unilamellar phospholipid vesicles were compared with a standard reconstituted system (SRS) in which the proteins were reconstituted with preformed liposomes. Both cholate dialysis and gel filtration methods were comparable in their ability to physically incorporate reductase and either CYP2B4 or CYP1A2 into phospholipid, as determined by the elution of enzymes in the void volume using size exclusion chromatography (mol. wt. cutoff -5,000,000). Incorporation of these proteins was more efficient with both cholate methods than when reductase and P450 were mixed with preformed vesicles (SRS). Using either cholate method, more than 85% of the P450 was physically incorporated into the phospholipid vesicles, whereas less than 40% of the P450 was physically incorporated into the phospholipid vesicles using the SRS. Catalytic activities of the vesicular preparations of reductase and either CYP1A2 or CYP2B4 also were significantly higher than those resulting from the SRS using dilaurylphosphatidylcholine. Although both cholate dialysis and gel filtration methods improved protein incorporation when compared with preincubation of proteins with preformed liposomes, reductase incorporation was dependent on the relative amount of reductase used. Reductase incorporation was complete at a 0.2:1 reductase/P450 ratio; however, the efficiency of incorporation decreased to less than 50% at equimolar reductase/P450. Interestingly, reductase incorporation was higher in the presence of CYP1A2 than with CYP2B4. Both cholate methods resulted in the loss of a proportion of spectrally detectable carbon monoxyferrous P450, resulting from incubation of the proteins with detergent.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Lipossomos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Colatos , Cromatografia em Gel/métodos , Família 2 do Citocromo P450 , Diálise/métodos , Fígado/enzimologia , NADPH-Ferri-Hemoproteína Redutase/genética , Fosfatidilcolinas , Ligação Proteica , Coelhos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA