Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(2): 276-287, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37772456

RESUMO

In pursuit of a suitable scaffold material for cardiac valve tissue engineering applications, an acellular, electrospun, biodegradable polyester carbonate urethane urea (PECUU) scaffold was evaluated as a pulmonary valve leaflet replacement in vivo. In sheep (n = 8), a single pulmonary valve leaflet was replaced with a PECUU leaflet and followed for 1, 6, and 12 weeks. Implanted leaflet function was assessed in vivo by echocardiography. Explanted samples were studied for gross pathology, microscopic changes in the extracellular matrix, host cellular re-population, and immune responses, and for biomechanical properties. PECUU leaflets showed normal leaflet motion at implant, but decreased leaflet motion and dimensions at 6 weeks. The leaflets accumulated α-SMA and CD45 positive cells, with surfaces covered with endothelial cells (CD31+). New collagen formation occurred (Picrosirius Red). Accumulated tissue thickness correlated with the decrease in leaflet motion. The PECUU scaffolds had histologic evidence of scaffold degradation and an accumulation of pro-inflammatory/M1 and anti-inflammatory/M2 macrophages over time in vivo. The extent of inflammatory cell accumulation correlated with tissue formation and polymer degradation but was also associated with leaflet thickening and decreased leaflet motion. Future studies should explore pre-implant seeding of polymer scaffolds, more advanced polymer fabrication methods able to more closely approximate native tissue structure and function, and other techniques to control and balance the degradation of biomaterials and new tissue formation by modulation of the host immune response.


Assuntos
Próteses Valvulares Cardíacas , Valva Pulmonar , Animais , Ovinos , Células Endoteliais , Alicerces Teciduais/química , Materiais Biocompatíveis , Polímeros , Poliésteres , Engenharia Tecidual/métodos
2.
Sci Rep ; 12(1): 18012, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289435

RESUMO

Each year, more than 40,000 people undergo mitral valve (MV) repair surgery domestically to treat regurgitation caused by myocardial infarction (MI). Although continual MV tissue remodelling following repair is believed to be a major contributor to regurgitation recurrence, the effects of the post-MI state on MV remodelling remain poorly understood. This lack of understanding limits our ability to predict the remodelling of the MV both post-MI and post-surgery to facilitate surgical planning. As a necessary first step, the present study was undertaken to noninvasively quantify the effects of MI on MV remodelling in terms of leaflet geometry and deformation. MI was induced in eight adult Dorset sheep, and real-time three-dimensional echocardiographic (rt-3DE) scans were collected pre-MI as well as at 0, 4, and 8 weeks post-MI. A previously validated image-based morphing pipeline was used to register corresponding open- and closed-state scans and extract local in-plane strains throughout the leaflet surface at systole. We determined that MI induced permanent changes in leaflet dimensions in the diastolic configuration, which increased with time to 4 weeks, then stabilised. MI substantially affected the systolic shape of the MV, and the range of stretch experienced by the MV leaflet at peak systole was substantially reduced when referred to the current time-point. Interestingly, when we referred the leaflet strains to the pre-MI configuration, the systolic strains remained very similar throughout the post-MI period. Overall, we observed that post-MI ventricular remodeling induced permanent changes in the MV leaflet shape. This predominantly affected the MV's diastolic configuration, leading in turn to a significant decrease in the range of stretch experienced by the leaflet when referenced to the current diastolic configuration. These findings are consistent with our previous work that demonstrated increased plastic (i.e. non-recoverable) leaflet deformations post-MI, that was completely accounted for by the associated changes in collagen fiber structure. Moreover, we demonstrated through noninvasive methods that the state of the MV leaflet can elucidate the progression and extent of MV adaptation following MI and is thus highly relevant to the design of current and novel patient specific minimally invasive surgical repair strategies.


Assuntos
Insuficiência da Valva Mitral , Infarto do Miocárdio , Ovinos , Animais , Valva Mitral/diagnóstico por imagem , Colágeno , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA