Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142239

RESUMO

In the maxillofacial area, specifically the orbital floor, injuries can cause bone deformities in the head and face that are difficult to repair or regenerate. Treatment methodologies include use of polymers, metal, ceramics on their own and in combinations mainly for repair purposes, but little attention has been paid to identify suitable materials for orbital floor regeneration. Polyurethane (PU) and hydroxyapatite (HA) micro- or nano- sized with different percentages (25%, 40% & 60%) were used to fabricate bioactive tissue engineering (TE) scaffolds using solvent casting and particulate leaching methods. Mechanical and physical characterisation of TE scaffolds was investigated by tensile tests and SEM respectively. Chemical and structural properties of PU and PU/HA scaffolds were evaluated by infrared (IR) spectroscopy and Surface properties of the bioactive scaffold were analysed using attenuated total reflectance (ATR) sampling accessory coupled with IR. Cell viability, collagen formed, VEGF protein amount and vascularisation of bioactive TE scaffold were studied. IR characterisation confirmed the integration of HA in composite scaffolds, while ATR confirmed the significant amount of HA present at the top surface of the scaffold, which was a primary objective. The SEM images confirmed the pores' interconnectivity. Increasing the content of HA up to 40% led to an improvement in mechanical properties, and the incorporation of nano-HA was more promising than that of micro-HA. Cell viability assays (using MG63) confirmed biocompatibility and CAM assays confirmed vascularization, demonstrating that HA enhances vascularization. These properties make the resulting biomaterials very useful for orbital floor repair and regeneration.


Assuntos
Poliuretanos , Fator A de Crescimento do Endotélio Vascular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Colágeno , Durapatita/química , Poliuretanos/química , Porosidade , Solventes , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Biotechnol Bioeng ; 113(8): 1814-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26806539

RESUMO

Perfusing culture media through porous cell-seeded scaffolds is now a common approach within many tissue engineering strategies. Human bone-marrow derived mesenchymal stem cells (hBMSC) are a clinically valuable source of osteoprogenitors that respond to mechanical stimuli. However, the optimal mechanical conditions for their osteogenic stimulation in vitro have not been defined. Whereas the effects of short durations of media fluid flow have been studied in monolayers of osteoblastic cells, in 3D culture continuous or repeated perfusion is usually applied. Here, we investigated whether a short, single perfusion session applied to hBMSCs cultured in 3D would enhance their osteogenesis in vitro. We cultured hBMSCs on gelatine-coated, porous polyurethane scaffolds with osteogenic supplements and stimulated them with a single 2-h session of unidirectional, steady, 2.5 mL/min media perfusion, at either early or late stages of culture in 3D. Some cells were pre-treated in monolayer with osteogenic supplements to advance cell differentiation, followed by 3D culture also with the osteogenic supplements. We report that this single, short session of media perfusion can markedly enhance the expression of bone-related transcription and growth factors, and matrix components, by hBMSCs but that it is more effective when cells reach the pre-osteoblast or osteoblast differentiation stage. These findings could aid in the optimization of 3D culture protocols for efficient bone tissue engineering. Biotechnol. Bioeng. 2016;113: 1814-1824. © 2016 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Alicerces Teciduais/química , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Perfusão , Poliuretanos , Porosidade , Engenharia Tecidual/métodos
3.
Biomacromolecules ; 16(1): 66-75, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25402847

RESUMO

Surface patterning in three dimensions is of great importance in biomaterials design for controlling cell behavior. A facile one-step functionalization of biodegradable PDLLA fibers using amphiphilic diblock copolymers is demonstrated here to systematically vary the fiber surface composition. The copolymers comprise a hydrophilic poly[oligo(ethylene glycol) methacrylate] (POEGMA), poly[(2-methacryloyloxy)ethyl phosphorylcholine] (PMPC), or poly[2-(dimethylamino)ethyl methacrylate)] (PDMAEMA) block and a hydrophobic poly(l-lactide) (PLA) block. The block copolymer-modified fibers have increased surface hydrophilicity compared to that of PDLLA fibers. Mixtures of PLA-PMPC and PLA-POEGMA copolymers are utilized to exploit microphase separation of the incompatible hydrophilic PMPC and POEGMA blocks at the fiber surface. Conjugation of an RGD cell-adhesive peptide to one hydrophilic block (POEGMA) using thiol-ene chemistry produces fibers with domains of cell-adhesive (POEGMA) and cell-inert (PMPC) sites, mimicking the adhesive properties of the extracellular matrix (ECM). Human mesenchymal progenitor cells (hES-MPs) showed much better adhesion to the fibers with surface-adhesive heterogeneity compared to that to fibers with only adhesive or only inert surface chemistries.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Polímeros/química , Tensoativos/química , Adesão Celular/fisiologia , Humanos , Polímeros/metabolismo , Propriedades de Superfície , Tensoativos/metabolismo
4.
J Mater Chem B ; 10(40): 8111-8165, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205119

RESUMO

The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Porosidade
5.
J Mater Sci Mater Med ; 21(5): 1761-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20135202

RESUMO

Novel polymeric micro-nanostructure meshes as blood vessels substitute have been developed and investigated as a potential solution to the lack of functional synthetic small diameter vascular prosthesis. A commercial elastomeric polyurethane (Tecoflex EG-80A) and a natural biopolymer (gelatin) were successfully co-electrospun from different spinnerets on a rotating mandrel to obtain composite meshes benefiting from the mechanical characteristics of the polyurethane and the natural biopolymer cytocompatibility. Morphological analysis showed a uniform integration of micrometric (Tecoflex) and nanometric (gelatin) fibers. Exposure of the composite meshes to vapors of aqueous glutaraldehyde solution was carried out, to stabilize the gelatin fibers in an aqueous environment. Uniaxial tensile testing in wet conditions demonstrated that the analyzed Tecoflex-Gelatin specimens possessed higher extensibility and lower elastic modulus than conventional synthetic grafts, providing a closer matching to native vessels. Biological evaluation highlighted that, as compared with meshes spun from Tecoflex alone, the electrospun composite constructs enhanced endothelial cells adhesion and proliferation, both in terms of cell number and morphology. Results suggest that composite Tecoflex-Gelatin meshes could be promising alternatives to conventional vascular grafts, deserving of further studies on both their mechanical behaviour and smooth muscle cell compatibility.


Assuntos
Prótese Vascular , Gelatina/química , Bioprótese , Elasticidade , Células Endoteliais , Humanos , Miócitos de Músculo Liso , Poliuretanos , Próteses e Implantes
6.
ACS Appl Mater Interfaces ; 12(11): 12510-12524, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32100541

RESUMO

Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.


Assuntos
Matriz Extracelular/química , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Humanos , Modelos Biológicos , Poliésteres/química , Porosidade , Impressão Tridimensional
7.
Biomed Phys Eng Express ; 6(2): 025007, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33438633

RESUMO

Autologous cancellous-bone grafts are the current gold standard for therapeutic interventions in which bone-regeneration is desired. The main limitations of these implants are the need for a secondary surgical site, creating a wound on the patient, the limited availability of harvest-safe bone, and the lack of structural integrity of the grafts. Synthetic, resorbable, bone-regeneration materials could pose a viable treatment alternative, that could be implemented through 3D-printing. We present here the development of a polylactic acid-hydroxyapatite (PLA-HAp) composite that can be processed through a commercial-grade 3D-printer. We have shown that this material could be a viable option for the development of therapeutic implants for bone regeneration. Biocompatibility in vitro was demonstrated through cell viability studies using the osteoblastic MG63 cell-line, and we have also provided evidence that the presence of HAp in the polymer matrix enhances cell attachment and osteogenicity of the material. We have also provided guidelines for the optimal PLA-HAp ratio for this application, as well as further characterisation of the mechanical and thermal properties of the composite. This study encompasses the base for further research on the possibilities and safety of 3D-printable, polymer-based, resorbable composites for bone regeneration.


Assuntos
Regeneração Óssea , Durapatita/química , Osteoblastos/citologia , Osteogênese , Poliésteres/química , Impressão Tridimensional/instrumentação , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Humanos , Engenharia Tecidual
8.
Materials (Basel) ; 12(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434207

RESUMO

Guided bone regeneration is a common dental implant treatment where a barrier membrane (BM) is used between epithelial tissue and bone or bone graft to prevent the invasion of the fast-proliferating epithelial cells into the defect site to be able to preserve a space for infiltration of slower-growing bone cells into the periodontal defect site. In this study, a bilayer polycaprolactone (PCL) BM was developed by combining electrospinning and emulsion templating techniques. First, a 250 µm thick polymerised high internal phase emulsion (polyHIPE) made of photocurable PCL was manufactured and treated with air plasma, which was shown to enhance the cellular infiltration. Then, four solvent compositions were investigated to find the best composition for electrospinning a nanofibrous PCL barrier layer on PCL polyHIPE. The biocompatibility and the barrier properties of the electrospun layer were demonstrated over four weeks in vitro by histological staining. Following in vitro assessment of cell viability and cell migration, cell infiltration and the potential of PCL polyHIPE for supporting blood vessel ingrowth were further investigated using an ex-ovo chick chorioallantoic membrane assay. Our results demonstrated that the nanofibrous PCL electrospun layer was capable of limiting cell infiltration for at least four weeks, while PCL polyHIPE supported cell infiltration, calcium and mineral deposition of bone cells, and blood vessel ingrowth through pores.

9.
J Mech Behav Biomed Mater ; 96: 193-203, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054514

RESUMO

Ti foams are advanced materials with great potential for biomedical applications as they can promote bone ingrowth, cell migration and attachment through providing interconnected porous channels that allow the penetration of the bone-forming cells and provide them with anchorage sites. However, Ti is a bio-inert material and thus only mechanical integration is achieved between the porous implant and the surrounding tissue, not the chemical integration which would be desirable. In this work particles of a biologically active material (Hydroxyapatite, HA) are blended with titanium powder, and used to produce Ti foams through the use of Metal Injection Moulding (MIM) in combination with a space holder. This produces titanium foams with incorporated HA, potentially inducing more favourable bone response to an implant from the surrounding tissue and improving the osseointegration of the Ti foams. To be able to do this, samples need to show sufficient mechanical and biocompatibility properties, and the foams produced were assessed for their mechanical behaviour and in vitro biological response. It was found that the incorporation of high levels of HA into the Ti foams induces brittleness in the structure and reduces the load bearing ability of the titanium foams as the chemical interaction between Ti and HA results in weak ceramic phases. However, adding small amounts of HA (about 2 vol%) was found to increase the yield strength of the Ti foams by 61% from 31.6 MPa to 50.9 MPa. Biological tests were also carried out in order to investigate the suitability of the foams for biomedical applications. It was found that Ti foams both with and without HA (at the 2 vol% addition level) support calcium and collagen production and have a good level of biocompatibility, with no significant difference observed between samples with and without the HA addition.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Titânio/química , Animais , Teste de Materiais , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Porosidade , Titânio/farmacologia
10.
J Mech Behav Biomed Mater ; 90: 20-29, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30342276

RESUMO

Dental implants need to support good osseointegration into the surrounding bone for full functionality. Interconnected porous structures have a lower stiffness and larger surface area compared with bulk structures, and therefore are likely to enable better bone-implant fixation. In addition, grading of the porosity may enable large pores for ingrowth on the periphery of an implant and a denser core to maintain mechanical properties. However, given the small diameter of dental implants it is very challenging to achieve gradations in porosity. This paper investigates the use of Selective Laser Melting (SLM) to produce a range of titanium structures with regular and graded porosity using various CAD models. This includes a novel 'Spider Web' design and lattices built on a diamond unit cell. Well-formed interconnecting porous structures were successfully developed in a one-step process. Mechanical testing indicated that the compression stiffness of the samples was within the range for cancellous bone tissue. Characterization by scanning electron microscopy (SEM) and X-ray micro-computed tomography (µCT) indicated the designed porosities were well-replicated. The structures supported bone cell growth and deposition of bone extracellular matrix.


Assuntos
Materiais Dentários/química , Lasers , Transição de Fase , Titânio/química , Ligas , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Materiais Dentários/farmacologia , Teste de Materiais , Modelos Moleculares , Conformação Molecular , Porosidade , Titânio/farmacologia
11.
Biofabrication ; 11(3): 035026, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31071692

RESUMO

Lesions of tendons and ligaments account for over 40% of the musculoskeletal lesions. Surgical techniques and materials for repair and regeneration are currently not satisfactory. The high rate of post-operative complications and failures mainly relates to the technical difficulties in replicating the complex multiscale hierarchical structure and the mechanical properties of the native tendons and ligaments. With the aim of overcoming the limitations of non-biomimetic devices, we developed a hierarchical structure replicating the organization of tendons and ligaments. The scaffold consists of multiple bundles made of resorbable electrospun nanofibers of Poly-L-Lactic acid (PLLA) having tailored dimensions, wrapped in a sheath of nanofibers able to compact the construct. The bundles in turn consist of electrospun nanofibers with a preferential direction. High-resolution x-ray tomographic investigation at nanometer resolution confirmed that the morphology of the single bundles and of the entire scaffold replicated the hierarchical arrangement in the natural tendons and ligaments. To confirm that these structures could adequately restore tendons and ligaments, we measured the tensile stiffness, strength and toughness. The mechanical properties were in the range required to replace and repair tendons and ligaments. Furthermore, human fibroblasts were able to attach to the scaffolds and showed an increase in cell number, indicated by an increase in metabolic activity over time. Fibroblasts were preferentially aligned along the electrospun nanofibers. These encouraging in vitro results open the way for the next steps towards in vivo regeneration of tendons and ligaments.


Assuntos
Ligamentos/fisiologia , Regeneração/fisiologia , Tendões/fisiologia , Alicerces Teciduais/química , Proliferação de Células , Fibroblastos/citologia , Humanos , Poliésteres/química , Resistência à Tração , Engenharia Tecidual
12.
Artigo em Inglês | MEDLINE | ID: mdl-30364287

RESUMO

Disruption of bone remodelling by diseases such as osteoporosis results in an imbalance between bone formation by osteoblasts and resorption by osteoclasts. Research into these metabolic bone disorders is primarily performed in vivo; however, in the last decade there has been increased interest in generating in vitro models that can reduce or replace our reliance on animal testing. With recent advances in biomaterials and tissue engineering the feasibility of laboratory-based alternatives is growing; however, to date there are no established in vitro models of bone remodelling. In vivo, remodelling is performed by organised packets of osteoblasts and osteoclasts called bone multicellular units (BMUs). The key determinant of whether osteoclasts form and remodelling occurs is the ratio between RANKL, a cytokine which stimulates osteoclastogenesis, and OPG, its inhibitor. This review initially details the different circumstances, conditions, and factors which have been found to modulate the RANKL:OPG ratio, and fundamental factors to be considered if a robust in vitro model is to be developed. Following this, an examination of what has been achieved thus far in replicating remodelling in vitro using three-dimensional co-cultures is performed, before overviewing how such systems are already being utilised in the study of associated diseases, such as metastatic cancer and dental disorders. Finally, a discussion of the most important considerations to be incorporated going forward is presented. This details the need for the use of cells capable of endogenously producing the required cytokines, application of mechanical stimulation, and the presence of appropriate hormones in order to produce a robust model of bone remodelling.

13.
J Biomed Mater Res A ; 106(5): 1334-1340, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29316238

RESUMO

Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018.


Assuntos
Matriz Óssea/metabolismo , Poliésteres/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Camundongos , Porosidade
14.
J Tissue Eng Regen Med ; 12(2): 370-381, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28486747

RESUMO

Biodegradable electrospun polycaprolactone scaffolds can be used to support bone-forming cells and could fill a thin bony defect, such as in cleft palate. Oscillatory fluid flow has been shown to stimulate bone production in human progenitor cells in monolayer culture. The aim of this study was to examine whether bone matrix production by primary human mesenchymal stem cells from bone marrow or jaw periosteal tissue could be stimulated using oscillatory fluid flow supplied by a standard see-saw rocker. This was investigated for cells in two-dimensional culture and within electrospun polycaprolactone scaffolds. From day 4 of culture onwards, samples were rocked at 45 cycles/min for 1 h/day, 5 days/week (rocking group). Cell viability, calcium deposition, collagen production, alkaline phosphatase activity and vascular endothelial growth factor secretion were evaluated to assess the ability of the cells to undergo bone differentiation and induce vascularisation. Both cell types produced more mineralized tissue when subjected to rocking and supplemented with dexamethasone. Mesenchymal progenitors and primary human mesenchymal stem cells from bone marrow in three-dimensional scaffolds upregulated mineral deposition after rocking culture as assessed by micro-computed tomography and alizarin red staining. Interestingly, vascular endothelial growth factor secretion, which has previously been shown to be mechanically sensitive, was not altered by rocking in this system and was inhibited by dexamethasone. Rocker culture may be a cost effective, simple pretreatment for bone tissue engineering for small defects such as cleft palate.


Assuntos
Calcificação Fisiológica , Células-Tronco/citologia , Estresse Mecânico , Regulação para Cima , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Arcada Osseodentária/citologia , Células-Tronco Mesenquimais/citologia , Minerais/metabolismo , Periósteo/citologia , Poliésteres/química , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Sci Rep ; 8(1): 17167, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464300

RESUMO

Surgical treatment of tendon lesions still yields unsatisfactory clinical outcomes. The use of bioresorbable scaffolds represents a way forward to improve tissue repair. Scaffolds for tendon reconstruction should have a structure mimicking that of the natural tendon, while providing adequate mechanical strength and stiffness. In this paper, electrospun nanofibers of two crosslinked PLLA/Collagen blends (PLLA/Coll-75/25, PLLA/Coll-50/50) were developed and then wrapped in bundles, where the nanofibers are predominantly aligned along the bundles. Bundle morphology was assessed via SEM and high-resolution x-ray computed tomography (XCT). The 0.4-micron resolution in XCT demonstrated a biomimetic morphology of the bundles for all compositions, with a predominant nanofiber alignment and some scatter (50-60% were within 12° from the axis of the bundle), similar to the tendon microstructure. Human fibroblasts seeded on the bundles had increased metabolic activity from day 7 to day 21 of culture. The stiffness, strength and toughness of the bundles are comparable to tendon fascicles, both in the as-spun condition and after crosslinking, with moderate loss of mechanical properties after ageing in PBS (7 and 14 days). PLLA/Coll-75/25 has more desirable mechanical properties such as stiffness and ductility, compared to the PLLA/Coll-50/50. This study confirms the potential to bioengineer tendon fascicles with enhanced 3D structure and biomechanical properties.


Assuntos
Bioengenharia/métodos , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Colágeno , Nanofibras/química , Poliésteres , Alicerces Teciduais/química , Humanos , Microscopia Eletroquímica de Varredura , Medicina Regenerativa/métodos , Tomografia Computadorizada por Raios X
16.
Biomaterials ; 28(28): 4091-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17586040

RESUMO

Bioactive glass is used as both a bone filler and as a coating on implants, and has been advocated as a potential osteogenic scaffold for tissue engineering. Rat-derived mesenchymal stem cells (MSCs) show elevated levels of alkaline phosphatase activity when grown on 45S5 bioactive glass as compared to standard tissue culture plastic. Similarly, exposure to the dissolution products of 45S5 elevates alkaline phosphatase activity and other osteogenic markers in these cells. We investigated whether human MSCs grown under the same laboratory conditions as rat MSCs would exhibit similar responses. In general, human MSCs produce markedly less alkaline phosphatase activity than rat MSCs, regardless of cell culture conditions, and do not respond to the growth factor BMP-2 in the same way as rat MSCs. In our experiments there was no difference in alkaline phosphatase activity between human MSCs grown on 45S5 bioactive glass or tissue culture plastic, in samples from five different orthopaedic patients, regardless of culture media composition. Neither was there any consistent effect of 45S5 dissolution products on human MSCs from three different donors. These results suggest that the positive effects of bioactive glass on bone growth in human patients are not mediated by accelerated differentiation of mesenchymal stem cells.


Assuntos
Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Cerâmica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Vidro , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Ratos , Engenharia Tecidual
17.
Proc Inst Mech Eng H ; 230(8): 761-74, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27226064

RESUMO

A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes.


Assuntos
Substitutos Ósseos/química , Durapatita/química , Poliésteres/química , Alicerces Teciduais/química , Fenômenos Biomecânicos , Dióxido de Carbono , Linhagem Celular , Humanos , Teste de Materiais , Porosidade , Engenharia Tecidual
18.
Polymers (Basel) ; 8(6)2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30979316

RESUMO

Composite tissue-engineered constructs combining bone and soft tissue have applications in regenerative medicine, particularly dentistry. This study generated a tri-layer, electrospun, poly-ε-caprolactone membrane, with two microfiber layers separated by a layer of nanofibers, for the spatially segregated culture of mesenchymal progenitor cells (MPCs) and fibroblasts. The two cell types were seeded on either side, and cell proliferation and spatial organization were investigated over several weeks. Calcium deposition by MPCs was detected using xylenol orange (XO) and the separation between fibroblasts and the calcified matrix was visualized by confocal laser scanning microscopy. SEM confirmed that the scaffold consisted of two layers of micron-diameter fibers with a thin layer of nano-diameter fibers in-between. Complete separation of cell types was maintained and calcified matrix was observed on only one side of the membrane. This novel tri-layer membrane is capable of supporting the formation of a bilayer of calcified and non-calcified connective tissue.

19.
J Mech Behav Biomed Mater ; 54: 159-72, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26458114

RESUMO

Polymerised High Internal Phase Emulsions (PolyHIPEs) are manufactured via emulsion templating and exhibit a highly interconnected microporosity. These materials are commonly used as thin membranes for 3D cell culture. This study uses emulsion templating in combination with microstereolithography to fabricate PolyHIPE scaffolds with a tightly controlled and reproducible architecture. This combination of methods produces hierarchical structures, where the microstructural properties can be independently controlled from the scaffold macrostructure. PolyHIPEs were fabricated with varying ratios of two acrylate monomers (2-ethylhexyl acrylate (EHA) and isobornyl acrylate (IBOA)) and varying nominal porosity to tune mechanical properties. Young's modulus, ultimate tensile stress (UTS) and elongation at failure were determined for twenty EHA/IBOA compositions. Moduli ranged from 63.01±9.13 to 0.36±0.04MPa, UTS from 2.03±0.33 to 0.11±0.01MPa and failure strain from 21.86±2.87% to 2.60±0.61%. Selected compositions were fabricated into macro-porous woodpile structures, plasma treated with air or acrylic acid and seeded with human embryonic stem-cell derived mesenchymal progenitor cells (hES-MPs). Confocal and two-photon microscopy confirmed cell proliferation and penetration into the micro- and macro-porous architecture. The scaffolds supported osteogenic differentiation of mesenchymal cells and interestingly, the stiffest IBOA-based scaffolds that were plasma treated with acrylic acid promoted osteogenesis more strongly than the other scaffolds.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/citologia , Fenômenos Mecânicos , Engenharia Tecidual , Alicerces Teciduais/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Emulsões , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Porosidade , Resistência à Tração
20.
Biomaterials ; 52: 140-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818420

RESUMO

Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.


Assuntos
Materiais Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Polímeros/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA