Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 143(7): 074904, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26298153

RESUMO

Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio D(bulk)/D(pore) by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.


Assuntos
DNA/química , Modelos Teóricos , Nanoporos , Análise de Sequência de DNA/métodos , Simulação por Computador , Difusão , Fenômenos Eletromagnéticos , Probabilidade , Soluções/química
2.
J Am Chem Soc ; 135(18): 7064-72, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23590258

RESUMO

Molecular dynamics simulations were used to refine a theoretical model that describes the interaction of single polyethylene glycol (PEG) molecules with α-hemolysin (αHL) nanopores. The simulations support the underlying assumptions of the model, that PEG decreases the pore conductance by binding cations (which reduces the number of mobile ions in the pore) and by volume exclusion, and provide bounds for fits to new experimental data. Estimation of cation binding indicates that four monomers coordinate a single K(+) in a crown-ether-like structure, with, on average, 1.5 cations bound to a PEG 29-mer at a bulk electrolyte concentration of 4 M KCl. Additionally, PEG is more cylindrical and has a larger cross-section area in the pore than in solution, although its volume is similar. Two key experimental quantities of PEG are described by the model: the ratio of single channel current in the presence of PEG to that in the polymer's absence (blockade depth) and the mean residence time of PEG in the pore. The refined theoretical model is simultaneously fit to the experimentally determined current blockade depth and the mean residence times for PEGs with 15 to 45 monomers, at applied transmembrane potentials of -40 to -80 mV and for three electrolyte concentrations. The model estimates the free energy of the PEG-cation complexes to be -5.3 kBT. Finally the entropic penalty of confining PEG to the pore is found to be inversely proportional to the electrolyte concentration.


Assuntos
Simulação de Dinâmica Molecular , Nanoporos , Polietilenoglicóis/química , Modelos Moleculares , Termodinâmica
3.
J Chem Phys ; 139(6): 065101, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23947891

RESUMO

We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Membrana Celular/efeitos dos fármacos , Bicamadas Lipídicas/química , Animais , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Células Sanguíneas/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Cobaias , Haplorrinos , Humanos , Membranas Artificiais , Coelhos
4.
Proc Natl Acad Sci U S A ; 107(27): 12080-5, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566890

RESUMO

Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single alpha-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K(+)-PEG inside the nanopore (approximately -49.7 meV) and the free energy of PEG partitioning into the nanopore ( approximately 0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications.


Assuntos
Espectrometria de Massas/métodos , Modelos Químicos , Nanoestruturas/química , Polímeros/análise , Algoritmos , Proteínas Hemolisinas/química , Cinética , Polietilenoglicóis/química , Polímeros/química , Porosidade
5.
Anal Chem ; 82(1): 180-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19950933

RESUMO

We present a nondestructive method to accurately characterize low analyte concentrations (0-10 molecules) in nanometer-scale lipid vesicles. Our approach is based on the application of fluorescence fluctuation analysis (FFA) and multiangle laser light scattering (MALLS) in conjunction with asymmetric field flow fractionation (AFFF) to measure the entrapment efficiency (the ratio of the concentration of encapsulated dye to the initial bulk concentration) of an ensemble of liposomes with an average diameter less than 100 nm. Water-soluble sulforhodamine B (SRB) was loaded into the aqueous interior of nanoscale liposomes synthesized in a microfluidic device. A confocal microscope was used to detect a laser-induced fluorescence signal resulting from both encapsulated and unencapsulated SRB molecules. The first two cumulants of this signal along with the autocorrelation function (ACF) were used to quantify liposome entrapment efficiency. Our analysis moves beyond typical, nonphysical assumptions of equal liposome size and brightness. These advances are essential for characterizing liposomes in the single-molecule encapsulation regime. Our work has further analytical impact because it could increase the interrogation time of free-solution molecular analysis by an order of magnitude and form the basis for the development of liposome standard reference materials.


Assuntos
Lipídeos/química , Nanoestruturas , Fluorescência , Lipossomos/química , Microfluídica
6.
Methods Mol Biol ; 870: 3-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22528255

RESUMO

Single-nanometer-scale pores have demonstrated the capability for the detection, identification, and characterization of individual molecules. This measurement method could soon extend the existing commercial instrumentation or provide solutions to niche applications in many fields, including health care and the basic sciences. However, that paradigm shift requires a significantly better understanding of the physics and chemistry that govern the interactions between nanopores and analytes. We describe herein some of our methods and approaches to address this issue.


Assuntos
Proteínas de Bactérias/química , Proteínas Hemolisinas/química , Nanoporos , Algoritmos , Biopolímeros/química , Técnicas de Química Analítica/métodos , Impedância Elétrica , Eletroquímica , Membranas Artificiais , Tamanho da Partícula , Análise de Sequência de DNA/métodos , Pesos e Medidas/instrumentação
7.
Sci Rep ; 2: 684, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23002425

RESUMO

We describe a novel single molecule nanopore-based sequencing by synthesis (Nano-SBS) strategy that can accurately distinguish four bases by detecting 4 different sized tags released from 5'-phosphate-modified nucleotides. The basic principle is as follows. As each nucleotide is incorporated into the growing DNA strand during the polymerase reaction, its tag is released and enters a nanopore in release order. This produces a unique ionic current blockade signature due to the tag's distinct chemical structure, thereby determining DNA sequence electronically at single molecule level with single base resolution. As proof of principle, we attached four different length PEG-coumarin tags to the terminal phosphate of 2'-deoxyguanosine-5'-tetraphosphate. We demonstrate efficient, accurate incorporation of the nucleotide analogs during the polymerase reaction, and excellent discrimination among the four tags based on nanopore ionic currents. This approach coupled with polymerase attached to the nanopores in an array format should yield a single-molecule electronic Nano-SBS platform.


Assuntos
DNA/química , Nucleotídeos de Desoxiguanina/análise , Técnicas Eletroquímicas/métodos , Nucleotídeos/análise , Análise de Sequência de DNA/métodos , Coloração e Rotulagem/métodos , Cumarínicos/química , Nucleotídeos de Desoxiguanina/química , Eletricidade , Técnicas Eletroquímicas/instrumentação , Corantes Fluorescentes , Peso Molecular , Nanoporos , Nucleotídeos/química , Polietilenoglicóis/química , Reação em Cadeia da Polimerase , Análise de Sequência de DNA/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Proc Natl Acad Sci U S A ; 103(5): 1173-7, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16432242

RESUMO

We create long polymer nanotubes by directly pulling on the membrane of polymersomes using either optical tweezers or a micropipette. The polymersomes are composed of amphiphilic diblock copolymers, and the nanotubes formed have an aqueous core connected to the aqueous interior of the polymersome. We stabilize the pulled nanotubes by subsequent chemical cross-linking. The cross-linked nanotubes are extremely robust and can be moved to another medium for use elsewhere. We demonstrate the ability to form networks of polymer nanotubes and polymersomes by optical manipulation. The aqueous core of the polymer nanotubes together with their robust character makes them interesting candidates for nanofluidics and other applications in biotechnology.


Assuntos
Nanotubos/química , Polímeros/química , Fenômenos Químicos , Físico-Química , Reagentes de Ligações Cruzadas/farmacologia , Bicamadas Lipídicas/química , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Vídeo , Nanotecnologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA