Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593498

RESUMO

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Nitrilas , Estresse Oxidativo , Polietileno , Piretrinas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Piretrinas/toxicidade , Nitrilas/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Polietileno/toxicidade , Adsorção
2.
J Environ Manage ; 330: 117097, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584464

RESUMO

Coal mines generate a lot of dust during production and transportation, which not only damages the health of personnel, but also causes environmental pollution. Based on the problems of low extraction efficiency of cellulose matrix and low economy of existing dust suppressants for biomass materials, this paper uses bagasse extracted cellulose from sugar production waste as a matrix and adds polyvinyl alcohol and polyacrylamide as monomers to prepare a wetting-crusting type highly efficient environmental protection dust suppressant for coal mine production and transportation process. The dust suppression effect of the product was analyzed by the performance tests of dust suppression efficiency, consolidation layer strength and permeability. The dust suppression rate of the product prepared in this paper remained above 90% at the simulated wind speed of 10 m/s, the consolidation layer strength of 42.3 KPa was much higher than that of the pure water solution, and the average permeation rate within 30 min was greater than that of the surfactant solution. It is proved that the dust suppressant prepared in this paper has good dust suppression effect, high consolidated layer strength and good permeability, and the product prepared in this paper using environmentally friendly biomass raw materials has good degradability, and the mechanism of the dust suppressant is illustrated by MS simulation. The biomass dust suppressant can meet the requirements of dust suppression in the process of coal mining and transportation and is non-toxic and environmentally friendly.


Assuntos
Minas de Carvão , Saccharum , Poeira/análise , Celulose , Carvão Mineral/análise
3.
Soft Matter ; 15(38): 7583-7589, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31465079

RESUMO

Injectable hydrogels are adapted to irregularities in the desired location by injection as a liquid and gelation in situ. However, traditional slow-gelling injectable hydrogels may result in loss of cargo (cells/drugs) as well as diffusion at the target site, and extremely rapid gelation may lead to undesired premature coagulation. These practical problems can be solved by using self-healing hydrogels. Herein, through the reduction of disulfide bonds in BSA protein by using a reducing agent, the disulfide bonds between the individual BSA protein molecules are re-matched to form a network structure, thereby forming a protein hydrogel. This hydrogel shows an efficient and rapid self-healing property, and the broken protein hydrogel can be fast repaired within 1-2 minutes in response to H2O2 stimulation, and the repair efficiency reached up to 100%. The hydrogel can be extruded using only a pinhole syringe, and cytotoxicity experiments have demonstrated excellent biocompatibility of the protein hydrogel. This non-toxic, injectable, fast self-healing protein hydrogel is expected to be widely used in biomedical, tissue engineering, injectable gel, 3D bioprinting, and other applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Soroalbumina Bovina/química , Animais , Bovinos , Sobrevivência Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Injeções , Células MCF-7 , Oxirredução , Reologia , Resistência à Tração
4.
Dalton Trans ; 53(5): 2120-2130, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180436

RESUMO

To tackle the obstacles related to tumor targeting and overcome the limitations of single treatment models, we have developed a nanoplatform that is both tumor-targeted and enzyme-responsive. This nanoplatform integrates photothermal gold nanorods (AuNRs) and protein drugs into a single system. This nanosystem, known as AuNRs@HA-mPEG-Deta-LA, was fabricated by modifying gold nanorods (AuNRs) with a polymeric ligand called hyaluronic acid-grafted-(mPEG/diethylenetriamine-conjugated-lipoic acid). The purpose of this fabrication was to load cytochrome c (CC) and utilize it for the synergetic protein-photothermal therapy of cancer. The resulting nanoplatform exhibited a high efficiency in loading proteins and demonstrated excellent stability in different biological environments. Additionally, CC-loaded AuNRs@HA-mPEG-Deta-LA not only enabled localized hyperthermia for photothermal therapy (PTT) with laser irradiation but also facilitated the release of CC under the action of hyaluronidase, an enzyme known to be overexpressed in tumor cells. The confocal imaging results demonstrated that the presence of a specific polymeric ligand on this nanoparticle enhances the internalization of CD44-positive cancer cells, accelerates endo/lysosomal escape, and facilitates the controlled release of CC within the cells. Furthermore, the results of the MTT assay also showed that AuNRs@HA-mPEG-Deta-LA as a protein nanocarrier demonstrated excellent biocompatibility. Importantly, this synergistic therapeutic strategy effectively induced apoptosis in A549 cancer cells by increasing the intracellular concentration of CC and utilizing the photothermal conversion of AuNRs, which was observed to be more effective compared to using only protein therapy or PTT. Therefore, this study showcased a nanoplatform based on AuNRs that has great potential for tumor-targeted protein delivery in combination with PTT in cancer treatment.


Assuntos
Hipertermia Induzida , Nanotubos , Neoplasias , Polietilenoglicóis , Humanos , Fototerapia , Terapia Fototérmica , Ouro/farmacologia , Ligantes , DEET , Neoplasias/terapia , Neoplasias/patologia , Lisossomos , Linhagem Celular Tumoral
5.
Chemosphere ; 267: 128900, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33234306

RESUMO

Solid wastes are generated from human activities which could cause damage to the ecological environment and human beings. In recent years, there has been extensive research on solid wastes utilized as precursors, aggregates, fibers, etc. to prepare the geopolymers, which has invariably been a research hotspot. This review classifies the solid wastes utilized for geopolymers into three main categories: industrial waste, agricultural waste, and municipal waste. Accordingly, we systematically dissert solid wastes-based geopolymer from the perspectives of structure, properties, and application. The chemical composition, morphology, particle size, thermal conductivity, and other characteristics of solid wastes can trigger changes in the specific properties of geopolymers. On this account, solid wastes-based geopolymers have great potential in the domain of concrete, fireproof materials, impermeable materials, catalysts, adsorbents, and energy storage materials, etc. More importantly, geopolymers have obvious advantages in immobilizing heavy metals in solid wastes. Therefore, it can demonstrate geopolymer is a sustainable and environmentally friendly "green material". However, it still confronts the challenges of solid wastes utilized in geopolymer (technology, economy, administration). It requires the government, enterprises, and the public to work together for co-governance to accomplish industrialization and commercialization of solid wastes-based geopolymer.


Assuntos
Metais Pesados , Resíduos Sólidos , Humanos , Resíduos Industriais , Metais Pesados/análise , Polímeros
6.
Drug Deliv ; 28(1): 873-883, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33960250

RESUMO

The aim of this investigation was to develop an etomidate intravenous lipid emulsion (ETM-ILE) and evaluate its properties in vitro and in vivo. Etomidate (ETM) is a hydrophobic drug, and organic solvents must be added to an etomidate injectable solution (ETM-SOL) to aid dissolution, that causes various adverse reactions on injection. Lipid emulsions are a novel drug formulation that can improve drug loading and reduce adverse reactions. ETM-ILE was prepared using high-pressure homogenization. Univariate experiments were performed to select key conditions and variables. The proportion of oil, egg lecithin, and poloxamer 188 (F68) served as variables for the optimization of the ETM-ILE formulation by central composite design response surface methodology. The optimized formulation had the following characteristics: particle size, 168.0 ± 0.3 nm; polydispersity index, 0.108 ± 0.028; zeta potential, -36.4 ± 0.2 mV; drug loading, 2.00 ± 0.01 mg/mL; encapsulation efficiency, 97.65% ± 0.16%; osmotic pressure, 292 ± 2 mOsmol/kg and pH value, 7.63 ± 0.07. Transmission electron microscopy images showed that the particles were spherical or spheroidal, with a diameter of approximately 200 nm. The stability study suggested that ETM-ILE could store at 4 ± 2 °C or 25 ± 2 °C for 12 months. Safety tests showed that ETM-ILE did not cause hemolysis or serious vascular irritation. The results of the pharmacokinetic study found that ETM-ILE was bioequivalent to ETM-SOL. However, a higher concentration of ETM was attained in the liver, spleen, and lungs after administration of ETM-ILE than after administration of ETM-SOL. This study found that ETM-ILE had great potential for clinical applications.


Assuntos
Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/farmacocinética , Etomidato/administração & dosagem , Etomidato/farmacocinética , Emulsões Gordurosas Intravenosas/química , Anestésicos Intravenosos/farmacologia , Animais , Química Farmacêutica , Estabilidade de Medicamentos , Etomidato/farmacologia , Concentração de Íons de Hidrogênio , Lecitinas/química , Masculino , Tamanho da Partícula , Poloxâmero/química , Coelhos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Óleo de Soja/química , Propriedades de Superfície
7.
Mol Neurobiol ; 56(9): 6095-6105, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30721447

RESUMO

Mutations in RAB18, a member of small G protein, cause Warburg micro syndrome (WARBM), whose clinical features include vision impairment, postnatal microcephaly, and lower limb spasticity. Previously, our Rab18-/- mice exhibited hind limb weakness and spasticity as well as signs of axonal degeneration in the spinal cord and lumbar spinal nerves. However, the cellular and molecular function of RAB18 and its roles in the pathogenesis of WARBM are still not fully understood. Using immunofluorescence staining and expression of Rab18 and organelle markers, we find that Rab18 associates with lysosomes and actively traffics along neurites in cultured neurons. Interestingly, Rab18-/- neurons exhibit impaired lysosomal transport. Using autophagosome marker LC3-II, we show that Rab18 dysfunction leads to aberrant autophagy activities in neurons. Electron microscopy further reveals accumulation of lipofuscin-like granules in the dorsal root ganglion of Rab18-/- mice. Surprisingly, Rab18 colocalizes, cofractionates, and coprecipitates with the lysosomal regulator Rab7, mutations of which cause Charcot-Marie-Tooth (CMT) neuropathy type 2B. Moreover, Rab7 is upregulated in Rab18-deficient neurons, suggesting a compensatory effect. Together, our results suggest that the functions of RAB18 and RAB7 in lysosomal and autophagic activities may constitute an overlapping mechanism underlying WARBM and CMT pathogenesis in the nervous system.


Assuntos
Anormalidades Múltiplas/metabolismo , Autofagia , Catarata/congênito , Doença de Charcot-Marie-Tooth/metabolismo , Córnea/anormalidades , Hipogonadismo/metabolismo , Deficiência Intelectual/metabolismo , Lisossomos/metabolismo , Microcefalia/metabolismo , Sistema Nervoso/metabolismo , Atrofia Óptica/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Catarata/metabolismo , Córnea/metabolismo , Epistasia Genética , Células HEK293 , Humanos , Laminopatias , Camundongos , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Ratos , Ratos Sprague-Dawley
8.
Adv Mater ; 29(29)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585319

RESUMO

Articular cartilage repair remains a great challenge for clinicians and researchers. Recently, there emerges a promising way to achieve one-step cartilage repair in situ by combining endogenic bone marrow stem cells (BMSCs) with suitable biomaterials using a tissue engineering technique. To meet the increasing demand for cartilage tissue engineering, a structurally and functionally optimized scaffold is designed, by integrating silk fibroin with gelatin in combination with BMSC-specific-affinity peptide using 3D printing (3DP) technology. The combination ratio of silk fibroin and gelatin greatly balances the mechanical properties and degradation rate to match the newly formed cartilage. This dually optimized scaffold has shown superior performance for cartilage repair in a knee joint because it not only retains adequate BMSCs, due to efficient recruiting ability, and acts as a physical barrier for blood clots, but also provides a mechanical protection before neocartilage formation and a suitable 3D microenvironment for BMSC proliferation, differentiation, and extracellular matrix production. It appears to be a promising biomaterial for knee cartilage repair and is worthy of further investigation in large animal studies and preclinical applications. Beyond knee cartilage, this dually optimized scaffold may also serve as an ideal biomaterial for the regeneration of other joint cartilages.


Assuntos
Materiais Biocompatíveis/química , Cartilagem Articular/fisiologia , Fibroínas/química , Gelatina/química , Impressão Tridimensional , Animais , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Desenho Assistido por Computador , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Engenharia Tecidual , Alicerces Teciduais/química
9.
PLoS One ; 8(7): e66890, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874402

RESUMO

Ideal wound dressing materials should create a good healing environment, with immediate hemostatic effects and antimicrobial activity. In this study, chitosan/konjac glucomannan (CS/KGM) films embedded with gentamicin-loaded poly(dex-GMA/AAc) nanoparticles (giving GNP-CS/KGM films) were prepared as novel wound dressings. The results revealed that the modified CS/KGM films could be used as effective wound dressings and had significant hemostatic effects. With their microporous structure, the films could effectively absorb water from blood and trap blood cells. The gentamicinloaded poly(dex-GMA/AAc) nanoparticles (GNPs) also further promoted blood clotting, with their favorable water uptake capacity. Thus, the GNP-CS/KGM films had wound healing and synergistic effects that helped to stop bleeding from injuries, and also showed good antibiotic abilities by addition of gentamicin to the NPs. These GNPCS/KGM films can be considered as promising novel biodegradable and biocompatible wound dressings with hemostatic capabilities and antibiotic effects for treatment of external bleeding injuries.


Assuntos
Antibacterianos/uso terapêutico , Nanopartículas/química , Polímeros/química , Animais , Antibacterianos/química , Estudos Transversais , Dextranos/química , Gentamicinas/química , Gentamicinas/uso terapêutico , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA