Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 11(45): 21759-21766, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31482919

RESUMO

Constructing nanocarriers with high drug loading capacity is a challenge, which limits the effective delivery of drugs to solid tumors. Here, we reported a one-pot synthesis of hollow nanoparticles (NPs) encapsulated by doxorubicin (DOX) and modified with polydopamine (PDA) to form PDA@DOX NPs for breast cancer treatment. PDA@DOX NPs demonstrated exceptionally high capacity (53.16%) for loading DOX. In addition, when PDA@DOX NPs were administered systemically, they exhibited responsive aggregation in the tumor sites and demonstrated a good controlled release effect for DOX due to the weak acidic environment of the tumor sites and targeting near-infrared (NIR) light irradiation. The PDA outer layer absorbed the near-infrared (NIR) light and facilitated simultaneous generation of heat energy for destroying the tumor cells to release the drug upon NIR irradiation. Moreover, this NIR-activated combined/synergistic therapy exhibited remarkably complete tumor growth suppression in a breast cancer mouse model. Importantly, NPs exhibited a good ultrasound performance both in vitro and in vivo, which could monitor the treatment process. In conclusion, this NIR-activated PDA@DOX NP system is demonstrated as a good US-guided combination (chemotherapy + PTT) therapy platform with high loading capacity and controlled drug release characteristics, which is promising for the treatment of breast cancer.


Assuntos
Doxorrubicina , Hipertermia Induzida , Indóis , Neoplasias Mamárias Experimentais , Nanopartículas , Fototerapia , Polímeros , Animais , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia
2.
Adv Healthc Mater ; 7(24): e1801144, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370656

RESUMO

Compared with other subtypes of breast cancer, triple-negative breast cancer (TNBC) is seriously threatening to human life. Therefore, it is a matter of urgency to develop multifunctional nanoprobes for visualized theranostics of TNBC, achieving specific targeting toward only TNBC, but not other subtypes. Nanoscale metal-organic frameworks (MOFs) show important potential in visualized theranostics of tumors, but it is critical to synthesize well-defined core-shell MOF-based nanocomposites by encapsulating a single nanoparticle within MOF. In this study, a TNBC-targeted peptide (ZD2)-engineered, and a single gold nanostar (AuNS) coated within MIL-101-NH2 (Fe) by coating MOF with four cycles, obtain well-defined core-shell AuNS@MOF-ZD2 nanocomposites, which are expected to achieve T1 -weighted magnetic resonance imaging and photothermal therapy (PTT) specifically targeting toward TNBC. The prepared AuNS@MOF-ZD2 nanocomposites possess good biocompatibility, efficient T1 -weighted magnetic resonance (MR) relaxivity and stable photothermal conversion ability with an efficiency of 40.5%. The in vitro and in vivo characterizations prove their performances of T1 -weighted MR and PTT with a low power density of 808 nm laser, achieving excellent theranostic efficacy in TNBC. Importantly, it is demonstrated that the prepared AuNS@MOF-ZD2 nanoprobes can specifically target TNBC cells (MDA-MB-231), but not other subtypes of breast cancer cells (MDA-MB-435, MDA-MB-468, and MCF-7), indicating their promising application in visualized theranostics of breast cancers with molecular classification.


Assuntos
Ouro/química , Estruturas Metalorgânicas/química , Nanocompostos/química , Peptídeos/química , Neoplasias de Mama Triplo Negativas/terapia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Hipotermia Induzida , Lasers , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Fototerapia , Nanomedicina Teranóstica , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia
3.
ACS Nano ; 11(11): 10992-11004, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29039917

RESUMO

The recently emerged exceedingly small magnetic iron oxide nanoparticles (ES-MIONs) (<5 nm) are promising T1-weighted contrast agents for magnetic resonance imaging (MRI) due to their good biocompatibility compared with Gd-chelates. However, the best particle size of ES-MIONs for T1 imaging is still unknown because the synthesis of ES-MIONs with precise size control to clarify the relationship between the r1 (or r2/r1) and the particle size remains a challenge. In this study, we synthesized ES-MIONs with seven different sizes below 5 nm and found that 3.6 nm is the best particle size for ES-MIONs to be utilized as T1-weighted MR contrast agent. To enhance tumor targetability of theranostic nanoparticles and reduce the nonspecific uptake of nanoparticles by normal healthy cells, we constructed a drug delivery system based on the 3.6 nm ES-MIONs for T1-weighted tumor imaging and chemotherapy. The laser scanning confocal microscopy (LSCM) and flow cytometry analysis results demonstrate that our strategy of precise targeting via exposure or hiding of the targeting ligand RGD2 on demand is feasible. The MR imaging and chemotherapy results on the cancer cells and tumor-bearing mice reinforce that our DOX@ES-MION3@RGD2@mPEG3 nanoparticles are promising for high-resolution T1-weighted MR imaging and precise chemotherapy of tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Imagem de Difusão por Ressonância Magnética , Compostos Férricos/química , Compostos Férricos/uso terapêutico , Humanos , Nanopartículas de Magnetita/química , Camundongos , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Nanomedicina Teranóstica/métodos
4.
Nanoscale ; 8(2): 878-88, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26648267

RESUMO

Multidrug resistance (MDR) of cancers is still a major challenge, and it is very important to develop visualized nanoprobes for the diagnosis and treatment of drug resistant cancers. In this work, we developed a multifunctional delivery system based on DOX-encapsulated NaYF4:Yb/Er@NaGdF4 yolk-shell nanostructures for simultaneous dual-modal imaging and enhanced chemotherapy in drug resistant breast cancer. Using the large pore volume of the nanostructure, the delivery system had a high loading efficiency and excellent stability. Also, an in vitro and in vivo toxicity study showed the good biocompatibility of the as-prepared yolk-shell nanomaterials. Moreover, by nanocarrier delivery, the uptake of DOX could be greatly increased in drug resistant MCF-7/ADR cells. Compared with free DOX, the as-prepared delivery system enhanced the chemotherapy efficacy against MCF-7/ADR cells, indicating the excellent capability for overcoming MDR. Furthermore, core-shell NaYF4:Yb/Er@NaGdF4 improved the upconversion luminescence (UCL) performance, and the designed delivery system could also be applied for simultaneous UCL and magnetic resonance (MR) imaging, which could be a good candidate as a dual-modal imaging nanoprobe. Therefore, we developed a multifunctional yolk-shell delivery system, which could have potential applications as a visualized theranostic nanoprobe to overcome MDR in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanomedicina/métodos , Animais , Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular , Doxiciclina/administração & dosagem , Feminino , Gadolínio/química , Humanos , Concentração de Íons de Hidrogênio , Luminescência , Células MCF-7 , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Nanopartículas/química
5.
Adv Healthc Mater ; 4(10): 1526-36, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26010821

RESUMO

White TiO2 nanoparticles (NPs) have been widely used for cancer photodynamic therapy based on their ultraviolet light-triggered properties. To date, biomedical applications using white TiO2 NPs have been limited, since ultraviolet light is a well-known mutagen and shallow penetration. This work is the first report about hydrogenated black TiO2 (H-TiO2 ) NPs with near infrared absorption explored as photothermal agent for cancer photothermal therapy to circumvent the obstacle of ultraviolet light excitation. Here, it is shown that photothermal effect of H-TiO2 NPs can be attributed to their dramatically enhanced nonradiative recombination. After polyethylene glycol (PEG) coating, H-TiO2 -PEG NPs exhibit high photothermal conversion efficiency of 40.8%, and stable size distribution in serum solution. The toxicity and cancer therapy effect of H-TiO2 -PEG NPs are relative systemically evaluated in vitro and in vivo. The findings herein demonstrate that infrared-irradiated H-TiO2 -PEG NPs exhibit low toxicity, high efficiency as a photothermal agent for cancer therapy, and are promising for further biomedical applications.


Assuntos
Raios Infravermelhos , Titânio/química , Animais , Temperatura Corporal/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Hidrogênio/química , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Polietilenoglicóis/química , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/efeitos da radiação , Transplante Heterólogo
6.
Colloids Surf B Biointerfaces ; 116: 561-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24583258

RESUMO

The aim of this study is to explore an improved double emulsion technology with in situ reaction of lysine (Lys) and glutaraldehyde (GA) for fabricating autofluorescent Lys-poly(lactic-co-glycolic acid)-GA (Lys-PLGA-GA) microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. Scanning electron microscope (SEM) and static light scattering (SLS) results show that 80% of the Lys-PLGA-GA microcapsules are larger than 1.0 µm and 90% of them are smaller than 8.9 µm. SEM and laser confocal scanning microscope (LCSM) data demonstrate that the structure of our Lys-PLGA-GA microcapsules is hollow. Compared with the FT-IR spectrum of PLGA microcapsules, a new peak at 1,644 cm(-1) in that of Lys-PLGA-GA microcapsules confirms the formed Schiff base in Lys-PLGA-GA microcapsules. LCSM images and fluorescence spectra show that our Lys-PLGA-GA microcapsules exhibit bright and stable autofluorescence without conjugation to any fluorescent agent, which can be ascribed to the n-π transitions of the CN bonds in the formed Schiff base. Our autofluorescent Lys-PLGA-GA microcapsules might have more wide applications than traditional fluorescent dyes because their excitation and emission spectra are both broad. The fluorescence intensity can also be tuned by the feeding amount of Lys and GA. The MTT assays reveal that the autofluorescent microcapsules are biocompatible. The results of fluorescent imaging in cells and in vitro ultrasonic imaging demonstrate the feasibility of our autofluorescent Lys-PLGA-GA microcapsules as ultrasonic/fluorescent dual-modality contrast agents. This novel ultrasonic/fluorescent dual-modality contrast agent might have potential for a variety of biological and medical applications.


Assuntos
Meios de Contraste/química , Fluorescência , Glutaral/química , Ácido Láctico/química , Lisina/química , Ácido Poliglicólico/química , Ultrassom , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cápsulas/química , Sobrevivência Celular , Meios de Contraste/síntese química , Emulsões/química , Humanos , Células MCF-7 , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Células Tumorais Cultivadas
7.
Biomaterials ; 35(25): 7058-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24855961

RESUMO

Photodynamic therapy (PDT) is a promising treatment modality for cancer and other malignant diseases, however safety and efficacy improvements are required before it reaches its full potential and wider clinical use. Herein, we investigated a highly efficient and safe photodynamic therapy procedure by developing a high/low power density photodynamic therapy mode (high/low PDT mode) using methoxypoly(ethylene glycol) thiol (mPEG-SH) modified gold nanorod (GNR)-AlPcS4 photosensitizer complexes. mPEG-SH conjugated to the surface of simple polyelectrolyte-coated GNRs was verified using Fourier transform infrared spectroscopy; this improved stability, reduced cytotoxicity, and increased the encapsulation and loading efficiency of the nanoparticle dispersions. The GNR-photosensitizer complexes were exposed to the high/low PDT mode (high light dose = 80 mW/cm(2) for 0.5 min; low light dose = 25 mW/cm(2) for 1.5 min), and a high PDT efficacy leads to approximately 90% tumor cell killing. Due to synergistic plasmonic photothermal properties of the complexes, the high/low PDT mode demonstrated improved efficacy over using single wavelength continuous laser irradiation. Additionally, no significant loss in viability was observed in cells exposed to free AlPcS4 photosensitizer under the same irradiation conditions. Consequently, free AlPcS4 released from GNRs prior to cellular entry did not contribute to cytotoxicity of normal cells or impose limitations on the use of the high power density laser. This high/low PDT mode may effectively lead to a safer and more efficient photodynamic therapy for superficial tumors.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanopartículas Metálicas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Humanos , Indóis/química , Células MCF-7 , Microscopia Confocal , Nanotubos/química , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA