Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7547-7558, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501312

RESUMO

The concept of combining external medical stimuli with internal functional biomaterials to achieve cancer-oriented treatments is being emergingly developed. Optical and acoustical activations have shown particular promise as non-invasive regulation modalities in cancer treatment and intervention. It is always challenging to leverage the contributions of optical and acoustical stimuli and find appropriate biomaterials to optimally match them. Herein, a type of hybrid nanomicelle (ICG@PEP@HA) containing ICG as a photo/sonosensitizer, an amphiphilic peptide for membrane penetration and hyaluronic acid for cluster determinant 44 (CD44) targeting was fabricated. Triggered by the external stimuli of laser and US irradiation, their photo/sonothermal performance, in vitro reactive oxygen species (ROS) production capability and tumor-targeting efficiency have been systematically evaluated. It was interestingly found that the external stimulus of laser irradiation induced a greater quantity of ROS, which resulted in significant cell apoptosis and tumor growth inhibition in the presence of ICG@PEP@HA. The individual analyses and corresponding rationales have been investigated. Meanwhile, these hybrid nanomicelles were administered into MDA-MB-231 tumor-bearing nude mice for PDT and SDT therapies and their biocompatibility assessment, and a prevailing PDT efficacy and reliable bio-safety have been evidenced based on the hematological analysis and histochemical staining. In summary, this study has validated a novel pathway to utilize these hybrid nanomicelles for laser/US-triggered localized tumor treatment, and the treatment efficiency may be leveraged by different external stimuli sources. It is also expected to give rise to full accessibility to clinical translations for human cancer treatments by means of the as-reported laser/US-nanomicelle combination strategy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Humanos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Hipertermia Induzida/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico
2.
J Mater Chem B ; 12(12): 3006-3014, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451210

RESUMO

Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.


Assuntos
Regeneração Óssea , Titânio , Ratos , Animais , Humanos , Titânio/farmacologia , Próteses e Implantes , Osteogênese , Osseointegração
3.
Environ Sci Pollut Res Int ; 27(28): 34653-34663, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31104237

RESUMO

The reuse of wastewater is one effective approach to solving the problem of water resource scarcity. However, deterioration in the quality of reused water, such as increased odor and bacterial growth, restricts its reuse. The objectives of this study were to characterize graywater (GW) treatment technology and to verify the suitability of the reclaimed water for toilet flushing. A membrane bioreactor (MBR) and biological aerated filter (BAF) were used to treat GW in a 1-year laboratory-scale experiment. The optimal operational conditions of the MBR and BAF were as follows: hydraulic retention time = 2-3 h, dissolved oxygen = 4-7 mg/L, mixed liquor suspended solids = 3500-4500 mg/L, and contact reaction time = 1.96-5.89 h, dissolved oxygen = 3-5 mg/L, backwash cycle time = 24-48 h, respectively. The MBR treatment resulted in reductions in COD, NH3-N, and turbidity of 60-90%, 80-90%, and 95-99%, respectively, whereas those of BAF treatment were 50-90%, 50-90%, and 80-90%, respectively. The BOD5 values of MBR and BAF effluent were 1.2-4.5 mg/L and 2.5-7 mg/L, respectively. GW treated by both MBR and BAF met the standard for reusing water for toilet flushing. The effluent from MBR, BAF, and BAF + ultrafiltration treatment and purified mixed wastewater was used to simulate toilet flushing at 28 °C, with the addition of 5 mg/L NaClO to the reused water. The residual chlorine levels were 1.5, 0.6, 0.9, and 0.5 mg/L, respectively, after 15 days. No bacteria were detected in any of the reclaimed water after 15 days. The water quality of the effluent of MBR-treated GW was better than that of the mixed wastewater. The results show that it is viable to use GW purified by MBR for toilet flushing. This study provides a scientific basis for the popularization and application of reclaimed water for toilet flushing.


Assuntos
Aparelho Sanitário , Purificação da Água , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA