Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1287: 342083, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182378

RESUMO

Wearable biomimetic electronics have aroused tremendous attention due to their capability to continuously detect and deliver real-time dynamic physiological signals pertaining to the wearer's environment. However, upon close contact with the human skins, a wearable sensor undergoes mechanical strain which inevitably degrades the electrical performance. To address this issue, we demonstrate a universal design approach for stretchable and multiplexed biosensors that can yield unaltered ion sensing performance under variable mechanical tensile strains, which is achieved by introducing a PMMA molecular layer between stretchable substrate and ion sensors. Such design demonstrates reliable multiplexed ion sensing capability and provides high sensitivity (>50 mV/decade), reliable selectivity, as well as wide working range (0.1-100 mM) for sodium, ammonium, potassium and calcium ions in complex sweat biomarkers. Via this introduced PMMA molecular layer, our sensor even exhibits 95 % electrical performance maintained up to 30 % tensile strain, whereas the mechanical tensile property is far superior to original sensor performance. Besides, the sensors were also utilized for real-time monitoring of ions in sweat to validate its biomedical electronics applications. This sensing platform can be easily extended to other biomimetic sensors to enable stable signal acquisition for biomedical electronics.


Assuntos
Biomimética , Polimetil Metacrilato , Humanos , Eletricidade , Íons , Potássio
2.
Int J Biol Macromol ; 261(Pt 2): 129831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302026

RESUMO

The primary purpose of this work is to study the fabrication of a flexible natural cellulosic fiber composite. In this respect, natural cellulosic fiber was obtained by modified poplar wood fiber through sodium hydroxide (NaOH) and γ-Aminopropyl Triethoxysilan. Then, the composites were fabricated by hot-pressing the modified wood fibers and polyurethane following characterization. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM) observation results confirmed that some of the hemicellulose and lignin were removed from wood fibers after NaOH modification and successfully grafted with alkoxy structures after KH550 modification. NaOH&KH550 modification improved the interfacial compatibility between poplar wood fibers and polyurethane. The flexibility of the composites was improved (the slenderness value was reduced by 113 %), allowing flexible deformations such as bending, twisting, and knotting. In addition, thermal stability, tensile strength (increased by 105 %), elongation at the break (increased by 125 %), and water resistance were increased. This flexible natural cellulosic fiber composite is expected to be applied in the veneering of curved materials and special-shaped structure furniture, providing a theoretical basis for improving the added value of wood-based composites.


Assuntos
Lignina , Poliuretanos , Propilaminas , Silanos , Hidróxido de Sódio , Lignina/química , Resistência à Tração
3.
Mar Environ Res ; 189: 106060, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37336093

RESUMO

Zooplankton community is ecological important because of its high sensitivity to environmental changes especially in estuarine areas. The Yellow River estuary (YRE) in China is the fifth biggest estuary in the world with significant seasonal characteristics and anthropogenic influence of Water-Sediment Regulation (WSR). This study investigated the spatio-temporal patterns of zooplankton in the YRE to explore the response of zooplankton to seasonal variation and WSR. Results suggested that the temporal patterns of zooplankton were mainly characterized by seasonal shift of dominant species. Hierarchical cluster analysis and non-metric multidimensional scaling determined summer, summer-autumn and winter-spring three zooplankton assemblages. Zooplankton spatial distributions represented seasonal consistency, in which the abundance generally showed a decreasing gradient from the river mouth to sea. WSR caused a high species replacement rate in July-August (80.36%) and a dramatic abundance decline from 4224.60 ind./m3 to 1541.10 ind./m3 with persistency and hysteresis effect. The high zooplankton abundance moved seaward in spatial distribution after WSR. Summer spatial pattern was determined with two and three zooplankton station assemblages, which was more clear after WSR. Redundancy analysis identified SSS, SST and transparency as important factors structuring zooplankton spatio-temporal patterns, in which SSS was the key one. The results provide a necessary reference for understanding the response of zooplankton community in estuarine areas to spontaneous changes and anthropogenic factors, and can help the protection of estuarine ecosystems and the formulation of hydrological regulatory policies.


Assuntos
Estuários , Zooplâncton , Animais , Zooplâncton/fisiologia , Ecossistema , Rios , Água , Estações do Ano , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA