Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 2): 134207, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089549

RESUMO

Fluorescent 4D printing materials, as innovative materials that combine fluorescent characteristics with 4D printing technology, have attracted widespread interest and research. In this study, green lignin-derived carbon quantum dots (CQDs) were used as the fluorescent module, and renewable poly(propylene carbonate) polyurethane (PPCU) was used for toughening. A new low-cost fluorescent polylactic acid (PLA) composite filament for 4D printing was developed using a simple melt extrusion method. The strength of the prepared composite was maintained at 32 MPa, while the elongation at break increased 8-fold (34 % increase), demonstrating excellent shape fixed ratio (∼99 %), recovery ratio (∼92 %), and rapid shape memory recovery speed. The presence of PPCU prevented fluorescence quenching of the CQDs in the PLA matrix, allowing the composite to emit bright green fluorescence under 365 nm ultraviolet light. The composite exhibited shear thinning behavior and had an ideal melt viscosity for 3D printing. The results obtained demonstrated the versatility of these easy-to-manufacture and low-cost filaments, opening up a novel and convenient method for the preparation of strong, tough, and multifunctional PLA materials, increasing their potential application value.


Assuntos
Carbono , Lignina , Poliésteres , Impressão Tridimensional , Pontos Quânticos , Pontos Quânticos/química , Poliésteres/química , Lignina/química , Carbono/química , Fluorescência
2.
Int J Biol Macromol ; 253(Pt 1): 126562, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652328

RESUMO

Light-responsive shape memory polymers are attractive as they can be activated through remote and spatially-controlled light. In this work, 4D printing of poly(lactic acid) (PLA) composites with a near-infrared light-responsive was achieved by using the simple melt blending method and adding 3 wt% of lignin. Lignin with a conjugated structure was used as the photothermal conversion module. The composites exhibited significant photothermal effects under near-infrared (808 nm) laser irradiation, and the laser irradiation was also effective in initiating and controlling the shape memory. The structure of lignin can be improved by the action of dicumyl peroxide (DCP) to enhance the interfacial adhesion between polyamide elastomer (PAE) and polylactic acid (PLA), reduce the size of dispersed phases, and serve as an effective rheological modifier to exhibit the ideal melt viscosity required for 3D printing of composites. The good mechanical, thermal stability, and rheological properties provide assurance for the 4D printing of composites. This research provides an environmentally friendly and practical method for creating composites that have the potential to serve as ideal actuator components in a range of applications.


Assuntos
Elastômeros , Lignina , Raios Infravermelhos , Poliésteres , Impressão Tridimensional
3.
Int J Biol Macromol ; 253(Pt 5): 127264, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804892

RESUMO

In this study, we report the development of a sustainable polymer system with 50 wt% lignin content, suitable for additive manufacturing and high value-added utilization of lignin. The plasticized polylactic acid (PLA) was incorporated with lignin to develop the bendable and malleable green composites with excellent 3D printing adaptability. The biocomposites exhibit increases of 765.54 % and 125.27 % in both elongation and toughness, respectively. The plasticizer enhances the dispersion of lignin and the molecular mobility of the PLA chains. The good dispersion of lignin particles within the structure and the reduction of chemical cross-linking promote the local relaxation of the polymer chains. The good local relaxation of the polymer chains and the high flexibility allow to obtain a better integration between the printed layers with good printability. This research demonstrates the promising potential of this composite system for sustainable manufacturing and provides insights into novel material design for high-value applications of lignin.


Assuntos
Lignina , Poliésteres , Polímeros , Plastificantes
4.
Int J Biol Macromol ; 221: 1209-1217, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36113592

RESUMO

The efficient utilization of lignin in 3D printing had attracted increasing attention using this abundant and eco-friendly material. However, the large-scale utilization of lignin in 3D printing remains a great challenge due to its inherent brittleness and non-thermoplasticity. In this study, thermoplastic polyurethane (TPU) was introduced to regulate the rheological properties of lignin for 3D printing. The Lignin/TPU composite of 3D printing exhibited a smooth surface, non-plastic, warm wood touch, and natural color at 50 wt% lignin loading. To further improve the mechanical properties of the composite, carbon fiber (CF) was added to the Lignin/TPU composite. The resulting CF/Lignin/TPU composites possessed 1.7 times higher tensile strength and 2.4 times higher elongation at break compared to Lignin/TPU composite. Meanwhile, the smooth surface of filament and dense interlayer bonds of printed specimens are also achieved. This work provides new insights to realize the high-value utilization of lignin and expands the practical application of lignin in 3D printing.


Assuntos
Lignina , Poliuretanos , Poliuretanos/química , Lignina/química , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA