Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(9): 5102-5113, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33587771

RESUMO

Cross-kingdom interactions involve dynamic processes that shape terrestrial ecosystems and represent striking examples of co-evolution. The multifaceted relationships of entomopathogenic nematodes with their insect hosts and symbiotic bacteria are well-studied cases of co-evolution and pathogenicity. In contrast, microbial interactions in soil after the natural death of insects and other invertebrates are minimally understood. In particular, the turnover and succession of nematodes and bacteria during insect decay have not been well documented - although it represents a rich ecological niche with multiple species interactions. Here, we utilize developmentally plastic nematode Pristionchus pacificus and its associated scarab beetles as models. On La Réunion Island, we collected rhinoceros beetle Oryctes borbonicus, induced death, and placed carcasses in cages both on the island and in a mock-natural environment in the laboratory controlling for high spatial and temporal resolution. Investigating nematode population density and dispersal dynamics, we were able to connect two imperative plasticities, dauer and mouth form. We observed a biphasic 'boom and bust' dispersal dynamic of dauer larvae that corresponds to bacterial load on carcasses but not bacterial type. Strikingly, all post-dauer adults have the predatory mouth form, demonstrating novel intricate interactions on decaying insect hosts. Thus, ecologically relevant survival strategies incorporate critical plastic traits.


Assuntos
Besouros , Nematoides , Animais , Carga Bacteriana , Ecossistema , Boca
2.
Front Cell Dev Biol ; 10: 985831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092706

RESUMO

Resource competition has driven the evolution of novel polyphenisms in numerous organisms, enhancing fitness in constantly changing environmental conditions. In natural communities, the myriad interactions among diverse species are difficult to disentangle, but the multidimensional microscopic environment of a decaying insect teeming with bacteria and fighting nematodes provides pliable systems to investigate. Necromenic nematodes of the family Diplogastridae live on beetles worldwide, innocuously waiting for their hosts' deaths to feast on the blooming bacteria. Often, more than one worm species either affiliates with the insect or joins the microbial meal; thus, competition over limited food ensues, and phenotypic plasticity provides perks for species capable of employing polyphenisms. The recently established system of cockchafer Gymnogaster bupthalma and its occasional co-infestation of Pristionchus mayeri and Acrostichus spp. has revealed that these worms will simultaneously utilize two polyphenisms to thrive in a competitive environment. While both genera maintain plastic capacities in mouth form (strictly bacterial-feeding and omnivorous predation) and developmental pathway (direct and arrested development, dauer), P. mayeri employs both when faced with competition from Acrostichus. Here, we took advantage of the malleable system and added a third competitor, model nematode Pristionchus pacificus. Intriguingly, with a third competitor, P. mayeri is quicker to exit dauer and devour available food, while Acrostichus hides in dauer, waiting for the two Pristionchus species to leave the immediate environment before resuming development. Thus, experimental manipulation of short-lived ecosystems can be used to study the roles of polyphenisms in organismal interactions and their potential significance for evolution.

3.
iScience ; 10: 123-134, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30513394

RESUMO

Many animal and plant species respond to population density by phenotypic plasticity. To investigate if specific age classes and/or cross-generational signaling affect density-dependent plasticity, we developed a dye-based method to differentiate co-existing nematode populations. We applied this method to Pristionchus pacificus, which develops a predatory mouth form to exploit alternative resources and kill competitors in response to high population densities. Remarkably, adult, but not juvenile, crowding induces the predatory morph in other juveniles. High-performance liquid chromatography-mass spectrometry of secreted metabolites combined with genetic mutants traced this result to the production of stage-specific pheromones. In particular, the P. pacificus-specific di-ascaroside#1 that induces the predatory morph is induced in the last juvenile stage and young adults, even though mouth forms are no longer plastic in adults. Cross-generational signaling between adults and juveniles may serve as an indication of rapidly increasing population size, arguing that age classes are an important component of phenotypic plasticity.

4.
Sci Rep ; 7(1): 7207, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775277

RESUMO

Environmental cues can impact development to elicit distinct phenotypes in the adult. The consequences of phenotypic plasticity can have profound effects on morphology, life cycle, and behavior to increase the fitness of the organism. The molecular mechanisms governing these interactions are beginning to be elucidated in a few cases, such as social insects. Nevertheless, there is a paucity of systems that are amenable to rigorous experimentation, preventing both detailed mechanistic insight and the establishment of a generalizable conceptual framework. The mouth dimorphism of the model nematode Pristionchus pacificus offers the rare opportunity to examine the genetics, genomics, and epigenetics of environmental influence on developmental plasticity. Yet there are currently no easily tunable environmental factors that affect mouth-form ratios and are scalable to large cultures required for molecular biology. Here we present a suite of culture conditions to toggle the mouth-form phenotype of P. pacificus. The effects are reversible, do not require the costly or labor-intensive synthesis of chemicals, and proceed through the same pathways previously examined from forward genetic screens. Different species of Pristionchus exhibit different responses to culture conditions, demonstrating unique gene-environment interactions, and providing an opportunity to study environmental influence on a macroevolutionary scale.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Boca/anatomia & histologia , Nematoides/anatomia & histologia , Animais , Evolução Biológica , Soluções Tampão , Meios de Cultura , Interação Gene-Ambiente , Nematoides/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA