Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 249: 118427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325780

RESUMO

Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.


Assuntos
Compostos Benzidrílicos , Fenóis , Polímeros , Poluentes Químicos da Água , Adsorção , Fenóis/química , Poluentes Químicos da Água/química , Porosidade , Polímeros/química , Compostos Benzidrílicos/química , Química Verde/métodos , Compostos Azo/química , Reciclagem/métodos , Purificação da Água/métodos
2.
Environ Geochem Health ; 46(3): 98, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393462

RESUMO

Microplastics, which have a diameter of less than 5 mm, are becoming an increasingly prevalent contaminant in terrestrial and aquatic ecosystems due to the dramatic increase in plastic production to 390.7 million tonnes in 2021. Among all the plastics produced since 1950, nearly 80% ended up in the environment or landfills and eventually reached the oceans. Currently, 82-358 trillion plastic particles, equivalent to 1.1-4.9 million tonnes by weight, are floating on the ocean's surface. The interactions between microorganisms and microplastics have led to the transportation of other associated pollutants to higher trophic levels of the food chain, where microplastics eventually reach plants, animals, and top predators. This review paper focuses on the interactions and origins of microplastics in diverse environmental compartments that involve terrestrial and aquatic food chains. The present review study also critically discusses the toxicity potential of microplastics in the food chain. This systematic review critically identified 206 publications from 2010 to 2022, specifically reported on microplastic transport and ecotoxicological impact in aquatic and terrestrial food chains. Based on the ScienceDirect database, the total number of studies with "microplastic" as the keyword in their title increased from 75 to 4813 between 2010 and 2022. Furthermore, various contaminants are discussed, including how microplastics act as a vector to reach organisms after ingestion. This review paper would provide useful perspectives in comprehending the possible effects of microplastics and associated contaminants from primary producers to the highest trophic level (i.e. human health).


Assuntos
Cadeia Alimentar , Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
3.
Environ Res ; 206: 112601, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973200

RESUMO

In order to effectively remove refractory bisphenol A (BPA) from water, a novel nitrogen doped organic porous functional azo linked polymer (ALP-p) was designed and prepared according to the physicochemical characteristics of propane linked to two phenol hydroxyl groups. This ALP-p was synthesized with 98.5% yield, from pararosaniline and phloroglucinol, via the diazo coupling reaction to produce multiple adsorption functional groups of benzene ring, hydroxyl group and azo group. This functional material showed high adsorption capacity of 357.8 mg/g for 50 mg/L BPA, at 20 °C. The adsorption kinetics and isotherms were described by the pseudo-second-order and Langmuir model, respectively. The major adsorption mechanisms were attributed to the high specific surface area (259.8 m2/g) and pore volume (0.56 cm3/g) related surface adsorption and pore diffusion through porous stereoscopic stacking cavity anchorage. The functional group from the three-dimensional skeleton structures of ALP-p for BPA anchoring endowed chemisorption via π-π interaction between benzene rings and hydrogen-bonding (O-H⋯O, C-H⋯N, C-H⋯O and C-H⋯C) with the hydrogen atom of benzene ring, -OH from BPA and -OH, NN from ALP-p, respectively. The coexisting organic pollutants and alkali environment posed a negative effect on adsorption, while salinity had no significant effect on the process. The adsorption capacity and recovery of ALP-p were >93.5% and 81.6% after five cycles of operation.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Compostos Benzidrílicos , Cinética , Fenóis/análise , Polímeros , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 465: 133343, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147753

RESUMO

The combined contamination of cadmium (Cd) and microplastics (MPs) in paddy soil always occurred, while its influence on Cd availability remained unclear. This study investigated the Cd availability in Cd-MPs co-contaminated paddy soil in consideration of both ferric minerals and sulfate reduction under flooding conditions. The presence of MPs resulted in a higher Cd releasing risk, as represented by the increase in the available Cd and decrease in Fe-Mn oxide-bound Cd contents, especially on the 7th and 14th days based on the sequential extraction results. MPs facilitated the formation of Fe-organic ligands, which accelerated the reductive dissolution of iron minerals but decreased the amounts of amorphous iron minerals due to the release of dissolved organic substances into pore water. Furthermore, MPs promoted the relative abundance of sulfate-reducing bacteria (such as Streptomyces and Desulfovibrio genera), thus increasing the contents of reductive S species, which was advantageous to the co-precipitation of Fe, S, and Cd on the surface of MPs based on our experimental and statistical results. Taken together, both iron and sulfate reduction under anaerobic conditions played a critical role in Cd mobilization in Cd-MPs co-contaminated paddy fields.


Assuntos
Oryza , Poluentes do Solo , Cádmio/metabolismo , Solo , Microplásticos/metabolismo , Plásticos/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Ferro/metabolismo , Minerais/metabolismo , Sulfatos/metabolismo
5.
Chemosphere ; 341: 140022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657695

RESUMO

A gaseous mixture of methanol (M), α-pinene (P), and hydrogen sulfide (H) was treated in one/two-liquid phase biotrickling filters (OLP/TLP-BTFs) at varying inlet concentrations and at an empty bed residence time (EBRT) of 57 s. The performance of TLP-BTF [BTF (A)] improved significantly in terms of M and P removal due to the presence of silicone oil at 5% v/v. The maximum elimination capacities (ECs) of M, P, and H in BTF (A) were obtained as 309, 73, and 56 g m-3 h-1, respectively. While, the maximum ECs achieved in the BTF operated without silicone oil [BTF (B)] were 172, 28, and 21 g m-3 h-1 for M, P, and H removal, respectively. Increasing the inlet concentration of H from 32 to 337 ppm inhibited P removal in both the BTFs. The presence of silicone oil enhanced gas-liquid mass transfer, prevented the BTF from experiencing substrate inhibition effects and allowed reaching high ECs for M and P. The experiments showed promising results for the long-term operation of removal of M, P, and H mixture in a one-stage TLP-BTF with the decreasing negative effects of M and H on P degradation.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Metanol , Óleos de Silicone , Reatores Biológicos , Filtração/métodos , Gases , Biodegradação Ambiental
6.
Waste Manag ; 150: 364-372, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914413

RESUMO

Biogas-based biopolymer production represents an alternative biogas valorization route with potential to cut down plastic pollution and greenhouse gas emissions. This study investigated for the first time the continuous bioconversion of methane, contained in biogas, into poly(3-hydroxybutyrate) (PHB) by a mixed methanotrophic culture using an innovative high mass-transfer Taylor flow bioreactor. Following a hydrodynamic flow regime mapping, the influence of the gas residence time and the internal gas recirculation on CH4 abatement was assessed under non nutrient limiting conditions. Under optimal operational conditions (gas residence time of 60 min and internal gas recycling ratio of 17), the bioreactor was able to support a CH4 removal efficiency of 63.3%, a robust CH4 elimination capacity (17.2 g-CH4 m-3h-1) and a stable biomass concentration (1.0 g L-1). The simultaneous CH4 abatement and PHB synthesis was investigated under 24-h:24-h nitrogen feast/famine continuous operation. The cyclic nitrogen starvation and the Taylor flow imposed in the bioreactor resulted in a relatively constant biomass concentration of 0.6 g L-1 with PHB contents ranging from 11 to 32% w w-1 (on a dry weight basis), entailing an average PHB productivity of 5.9 g-PHB m-3 d-1 with an associated PHB yield of 19.8 mg-PHB g-CH4-1. Finally, the molecular analysis of the microbial population structure indicated that type II methanotrophs outcompeted non-PHB accumulating type I methanotrophs, with a heterotrophic-methanotrophic consortium enriched in Methylocystis, Hyphomicrobium, Rubinisphaeraceae SH PL14 and Pseudonocardia.


Assuntos
Biocombustíveis , Methylocystaceae , Ácido 3-Hidroxibutírico , Reatores Biológicos , Hidroxibutiratos/química , Metano , Nitrogênio , Poliésteres
7.
Bioresour Technol ; 331: 124985, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33819906

RESUMO

The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.


Assuntos
Poli-Hidroxialcanoatos , Biocombustíveis , Biopolímeros , Reatores Biológicos , Resíduos Industriais , Águas Residuárias
8.
Bioresour Technol ; 332: 125133, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857867

RESUMO

The objectives of this study were to investigate the degradation characteristics of different microplastics (polyethylene (PE), polyvinyl chloride (PVC), polyhydroxyalkanoates (PHA)) and their effect on the bacterial community during composting. In this study, 0.5% PE, 0.5% PVC and 0.5% PHA microplastics were individually added to the mixture of cow manure and sawdust and then composted for 60 days. The treatment without microplastics was regarded as control. Results indicated that the abundance and smaller size (0-800 µm) of microplastics in all treatments obviously decreased after composting, except PVC treatment. The surface morphology of all microplastics occurred obvious erosions and cracks and the carbon content of PE, PVC and PHA microplastics were reduced by 30, 17 and 30%, respectively. After composting, all microplastics were significantly oxidized and the functional groups O-H, C=O and C-O increased. Furthermore, all microplastics exposure reduced the richness and diversity of bacteria community at thermophilic phase, especially PVC microplastics.


Assuntos
Compostagem , Microbiota , Esterco , Microplásticos , Plásticos
9.
Chemosphere ; 260: 127514, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688309

RESUMO

The main aim of this study was to evaluate the performance of an air membrane bioreactor (aMBR) for the treatment of gas-phase methanol. A laboratory-scale hollow fiber aMBR was operated for 150 days, at inlet methanol concentrations varying between 2 and 30 g m-3 and at empty bed residence times (EBRT) of 30, 10 and 5 s. Under steady-state conditions, a maximum methanol removal efficiency (RE) of 98% was obtained at an EBRT of 30 s and a decrease in RE of methanol was observed at lower EBRTs. On increasing the inlet loading rate, some portion of gas-phase MeOH was stripped into the liquid phase due to its solubility in water. Under transient conditions, the MeOH removal efficiency dropped from an average value of 95%-90% after 5 h of 10-fold shock load and dropped from an average value of 95%-88% under 5-fold increase in shock load. During transient-state tests, the aMBR performed well under different upset loading conditions and a drop in RE of ∼ 5-10% was observed. However, the aMBR performance was restored within 1-2 days when pre-shock conditions were restored. The results from microbial structure analysis revealed a big shift of the dominant methanol degrader, from Candida boidinii strain TBRC 217 to Xanthobacter sp. and Fusicolla sp., respectively.


Assuntos
Poluentes Atmosféricos/análise , Reatores Biológicos/microbiologia , Membranas Artificiais , Metanol/análise , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Desenho de Equipamento , Filtração/métodos , Xanthobacter/crescimento & desenvolvimento
10.
Int J Biol Macromol ; 155: 772-785, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234446

RESUMO

Different interpenetrating polymeric networks (IPN) based on sodium alginate, carrageenan and bentonite were developed to remove heavy metals and dyes from contaminated water. Four significant preparation factors; crosslinking time, calcium chloride concentration, alginate to carrageenan mass ratio,and bentonite to carrageenan mass ratio were studied and optimized via full factorial design and response surface methodology to determine the optimum composition with highest adsorption capacity. Different optimal conditions and combinations were found depending on the type of heavy metal or dye to be removed. Low calcium chloride concentration was a common factor in all cases of heavy metals and dyes removal which indicates the negative effect of excessive crosslinking on the removal percentage. The adsorption capacity of methylene blue, Fe3+, Ni2+, and Cr3+ ions is 1271, 1550, 1500 and 1540 mg/g adsorbent, respectively. Reusability tests confirmed that the optimized formulations can be reused five successive times without significant drop in their removal efficiency. Upon utilization of the optimized formulations on real contaminated waters from tannery plant and oasis groundwater, they demonstrated an excellent performance as they removed above 95% of the original heavy metals contaminants and 40% of the acidic dye content.


Assuntos
Alginatos/química , Bentonita/química , Carragenina/química , Metais Pesados/isolamento & purificação , Polímeros/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/normas , Propriedades de Superfície , Purificação da Água/métodos
11.
Chemosphere ; 234: 388-394, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31228841

RESUMO

The main aim of this work is to study gas-phase toluene removal in one- and two-liquid phase biotrickling filters (O/TLP-BTF) and model the BTF performance using artificial neural networks (ANNs). The TLP-BTF was operated for 60 d in the presence of silicone oil at empty bed residence times (EBRTs) of 120, 60, and 45 s, respectively, and toluene concentrations in the range of 0.9-3.1 g m-3. A t-test analysis indicated that increasing the silicone oil volume ratio from 5 to 10% v/v, did not significantly improve the TLP-BTF performance (p-value = 0.65 > 0.05). The results from ANN modeling showed that toluene removal was more negatively affected by the inlet concentration (casual index, CI = -5.63) due to the kinetic limitation. The CI values for inlet concentration (+4.01) and liquid trickling rate (-2.45) indicated that the diffusion-limited regime controlled the removal process in the OLP-BTF.


Assuntos
Filtração/métodos , Redes Neurais de Computação , Óleos de Silicone , Tolueno/isolamento & purificação , Poluentes Atmosféricos/isolamento & purificação , Gases , Cinética , Óleos de Silicone/química , Óleos de Silicone/farmacologia
12.
Chemosphere ; 236: 124290, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31310977

RESUMO

The aim of this work was to evaluate the performance of a biotrickling filter (BTF) packed with polyurethane foam and pall rings for the enrichment of microorganisms mediating anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) by activity tests and microbial community analysis. A BTF was inoculated with microorganisms from a known AOM active deep sea sediment collected at a depth of 528 m below the sea level (Alpha Mound, Gulf of Cadiz). The microbial community analysis was performed by catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and 16S rRNA sequence analysis. The AOM occurrence and rates in the BTF were assessed by performing batch activity assays using 13C-labelled methane (13CH4). After an estimated start-up time of ∼20 days, AOM rates of ∼0.3 mmol l-1 day-1 were observed in the BTF, values almost 20 times higher than previously reported in a polyurethane foam packed BTF. The microbial community consisted mainly of anaerobic methanotrophs (ANME-2, 22% of the total number of cells) and sulfate reducing bacteria (SRB, 47% of the total number of cells). This study showed that the BTF is a suitable reactor configuration for the enrichment of microbial communities involved in AOM coupled to SR at ambient pressure and temperature with a relatively short start-up time.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Sulfatos/metabolismo , Anaerobiose , Archaea/genética , Bactérias/genética , Biomassa , Hibridização in Situ Fluorescente , Microbiota , Oceanos e Mares , Oxirredução , Filogenia , Poliuretanos , RNA Ribossômico 16S/genética , Temperatura
13.
Environ Sci Pollut Res Int ; 25(6): 5115-5128, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28702909

RESUMO

Industrial wastewaters containing high concentrations of sulphate, such as those generated by mining, metallurgical and mineral processing industries, require electron donor for biological sulfidogenesis. In this study, five types of lignocellulosic biowastes were characterized as potential low-cost slow release electron donors for application in a continuously operated sulphidogenic inverse fluidized bed bioreactor (IFBB). Among them, natural scourer and cork were selected due to their high composition of volatile solids (VS), viz. 89.1 and 96.3%, respectively. Experiments were performed in batch (47 days) and in an IFBB (49 days) using synthetic sulphate-rich wastewater. In batch, the scourer gave higher sulphate reduction rates (67.7 mg SO42- L-1 day-1) in comparison to cork (12.1 mg SO42- L-1 day-1), achieving >82% sulphate reduction efficiencies. In the IFBB packed with the natural scourer, the average sulphate reduction efficiency was 24 (±17)%, while the volumetric sulphate reduction rate was 167 (±117) mg SO42- L-1 day-1. The long incubation time in the batch experiments (47 days) allowed higher sulphate reduction efficiencies in comparison to the short hydraulic retention time (24 h) in the IFBB. This suggests the hydrolysis-fermentation was the rate-limiting step and the electron donor supply (through hydrolysis of the lignocellulosic biowaste) was limiting the sulphate reduction. Lignocellulose as carrier material and slow release electron donor for sulphidogenesis.


Assuntos
Resíduos Industriais/análise , Lignina/análise , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Oxirredução
14.
Bioresour Technol ; 102(13): 6791-800, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21531553

RESUMO

A Sporothrix variecibatus-inoculated biotrickling filter (BTF) was examined for styrene removal, without and with the addition of silicone oil, at different empty bed residence times. The highest elimination capacities (ECs) were 172.8 (without silicone oil) and 670 g m(-3)h(-1) (with silicone oil), respectively, corresponding to a 4-fold improvement in presence of oil. The addition of silicone oil formed a well-coalesced emulsion of fungi and silicone oil, resulting in filter-bed clogging. Clogging prevention strategies adopted were; (i) lowering the volume ratio of silicone oil from 10% to 2% (v/v), and (ii) periodic increase in trickling rate of the medium from 50 to 190 mL min(-1). During shock-load experiments, the BTF with silicone oil (2% v/v) could withstand high styrene loads, of up to 1900 g m(-3)h(-1), when compared to the BTF without silicone oil (400 g m(-3)h(-1)).


Assuntos
Poluição do Ar/análise , Recuperação e Remediação Ambiental/instrumentação , Recuperação e Remediação Ambiental/métodos , Filtração/instrumentação , Pressão , Sporothrix/metabolismo , Estireno/isolamento & purificação , Biodegradação Ambiental , Dióxido de Carbono/análise , Óleos de Silicone/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA