Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(22): 12095-12100, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32409607

RESUMO

To advance mechanistic understanding of membrane-associated peptide folding and insertion, we have studied the kinetics of three single tryptophan pHLIP (pH-Low Insertion Peptide) variants, where tryptophan residues are located near the N terminus, near the middle, and near the inserting C-terminal end of the pHLIP transmembrane helix. Single-tryptophan pHLIP variants allowed us to probe different parts of the peptide in the pathways of peptide insertion into the lipid bilayer (triggered by a pH drop) and peptide exit from the bilayer (triggered by a rise in pH). By using pH jumps of different magnitudes, we slowed down the processes and established the intermediates that helped us to understand the principles of insertion and exit. The obtained results should also aid the applications in medicine that are now entering the clinic.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Membrana Celular/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Bicamadas Lipídicas/química , Lipossomos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Dobramento de Proteína , Termodinâmica , Triptofano/química , Triptofano/genética
2.
Proc Natl Acad Sci U S A ; 115(12): E2811-E2818, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507241

RESUMO

The pH (low) insertion peptides (pHLIPs) target acidity at the surfaces of cancer cells and show utility in a wide range of applications, including tumor imaging and intracellular delivery of therapeutic agents. Here we report pHLIP constructs that significantly improve the targeted delivery of agents into tumor cells. The investigated constructs include pHLIP bundles (conjugates consisting of two or four pHLIP peptides linked by polyethylene glycol) and Var3 pHLIPs containing either the nonstandard amino acid, γ-carboxyglutamic acid, or a glycine-leucine-leucine motif. The performance of the constructs in vitro and in vivo was compared with previous pHLIP variants. A wide range of experiments was performed on nine constructs including (i) biophysical measurements using steady-state and kinetic fluorescence, circular dichroism, and oriented circular dichroism to study the pH-dependent insertion of pHLIP variants across the membrane lipid bilayer; (ii) cell viability assays to gauge the pH-dependent potency of peptide-toxin constructs by assessing the intracellular delivery of the polar, cell-impermeable cargo molecule amanitin at physiological and low pH (pH 7.4 and 6.0, respectively); and (iii) tumor targeting and biodistribution measurements using fluorophore-peptide conjugates in a breast cancer mouse model. The main principles of the design of pHLIP variants for a range of medical applications are discussed.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Proteínas de Membrana/química , Peptídeos/administração & dosagem , Amanitinas/química , Animais , Antineoplásicos/química , Dicroísmo Circular , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Lipossomos/química , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacocinética , Polietilenoglicóis/química , Distribuição Tecidual
3.
Biophys J ; 114(9): 2107-2115, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742404

RESUMO

The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane's hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Concentração de Íons de Hidrogênio , Lipossomos/química , Lipossomos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ligação Proteica , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 110(1): 82-6, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248283

RESUMO

The pH (low) insertion peptide (pHLIP) family enables targeting of cells in tissues with low extracellular pH. Here, we show that ischemic myocardium is targeted, potentially opening a new route to diagnosis and therapy. The experiments were performed using two murine ischemia models: regional ischemia induced by coronary artery occlusion and global low-flow ischemia in isolated hearts. In both models, pH-sensitive pHLIPs [wild type (WT) and Var7] or WT-pHLIP-coated liposomes bind ischemic but not normal regions of myocardium, whereas pH-insensitive, kVar7, and liposomes coated with PEG showed no preference. pHLIP did not influence either the mechanical or the electrical activity of ischemic myocardium. In contrast to other known targeting strategies, the pHLIP-based binding does not require severe myocardial damage. Thus, pHLIP could be used for delivery of pharmaceutical agents or imaging probes to the myocardial regions undergoing brief restrictions of blood supply that do not induce irreversible changes in myocytes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas de Membrana/administração & dosagem , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Animais , Fluorescência , Concentração de Íons de Hidrogênio , Lipossomos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Biophys J ; 102(8): 1846-55, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22768940

RESUMO

The membrane-associated folding/unfolding of pH (low) insertion peptide (pHLIP) provides an opportunity to study how sequence variations influence the kinetics and pathway of peptide insertion into bilayers. Here, we present the results of steady-state and kinetics investigations of several pHLIP variants with different numbers of charged residues, with attached polar cargoes at the peptide's membrane-inserting end, and with three single-Trp variants placed at the beginning, middle, and end of the transmembrane helix. Each pHLIP variant exhibits a pH-dependent interaction with a lipid bilayer. Although the number of protonatable residues at the inserting end does not affect the ultimate formation of helical structure across a membrane, it correlates with the time for peptide insertion, the number of intermediate states on the folding pathway, and the rates of unfolding and exit. The presence of polar cargoes at the peptide's inserting end leads to the appearance of intermediate states on the insertion pathway. Cargo polarity correlates with a decrease of the insertion rate. We conclude that the existence of intermediate states on the folding and unfolding pathways is not mandatory and, in the simple case of a polypeptide with a noncharged and nonpolar inserting end, the folding and unfolding appears as an all-or-none transition. We propose a model for membrane-associated insertion/folding and exit/unfolding and discuss the importance of these observations for the design of new delivery agents for direct translocation of polar therapeutic and diagnostic cargo molecules across cellular membranes.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Concentração de Íons de Hidrogênio , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Estrutura Secundária de Proteína , Desdobramento de Proteína , Temperatura , Termodinâmica
6.
J Chem Theory Comput ; 14(6): 3289-3297, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29733633

RESUMO

The pH (low) insertion peptides (pHLIPs) is a family of peptides that are able to insert into a lipid bilayer at acidic pH. The molecular mechanism of pHLIPs insertion, folding, and stability in the membrane at low pH is based on multiple protonation events, which are challenging to study at the molecular level. More specifically, the relation between the experimental p K of insertion (p Kexp) of pHLIPs and the p Ka of the key residues is yet to be clarified. We carried out a computational study, complemented with new experimental data, and established the influence of (de)protonation of titrable residues on the stability of the peptide membrane-inserted state. Constant-pH molecular dynamics simulations were employed to calculate the p Ka values of these residues along the membrane normal. In the wt-pHLIP, we identified Asp14 as the key residue for the stability of the membrane-inserted state, and its p Ka value is strongly correlated with the experimental p Kexp measured in thermodynamics studies. Also, in order to narrow down the pH range at which pHLIP is stable in the membrane, we designed a new pHLIP variant, L16H, where Leu in the 16th position was replaced by a titrable His residue. Our results showed that the L16H variant undergoes two transitions. The calculated p Ka and experimentally observed p Kexp values are in good agreement. Two distinct p Kexp values delimit a pH range where the L16H peptide is stably inserted in the membrane, while, outside this range, the membrane-inserted state is destabilized and the peptide exits from the bilayer. pHLIP peptides have been successfully used to target cancer cells for the delivery of diagnostics and therapeutic agents to acidic tumors. The fine-tuning of the stability of the pHLIP inserted state and its restriction to a narrow well-defined pH range might allow the design of new peptides, able to discriminate between tissues with different extracellular pH values.


Assuntos
Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Termodinâmica
7.
J Phys Chem B ; 120(44): 11484-11491, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27726396

RESUMO

pH (Low) Insertion Peptides (pHLIP peptides) find application in studies of membrane-associated folding because spontaneous insertion of these peptides is conveniently triggered by varying pH. Here, we employed small-angle X-ray scattering (SAXS) to investigate a wild-type (WT) pHLIP peptide oligomeric state in solution at high concentrations and monitor changes in the liposome structure upon peptide insertion into the bilayer. We established that even at high concentrations (up to 300 µM) the WT pHLIP peptide at pH 8.0 does not form oligomers larger than tetramers (which exhibit concentration-dependent transfer to the monomeric state, as was shown previously). This finding has significance for medical applications when high concentration of the peptide is injected into blood and diluted in blood circulation. The interaction of WT pHLIP peptide with liposomes does not alter the unilamellar vesicle structure upon peptide adsorption by the lipid bilayer at high pH or upon insertion across the bilayer at low pH. At the same time, SAXS data clearly demonstrate the insertion of the peptide into the membrane at low pH, which opens the possibility of investigating the kinetic process of polypeptide insertion and exit from the membrane in real time by time-resolved SAXS.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Adsorção , Concentração de Íons de Hidrogênio , Lipossomos/química , Proteínas de Membrana/síntese química , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
J Control Release ; 167(3): 228-37, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23416366

RESUMO

We develop a method for pH-dependent fusion between liposomes and cellular membranes using pHLIP® (pH Low Insertion Peptide), which inserts into lipid bilayer of membrane only at low pH. Previously we establish the molecular mechanism of peptide action and show that pHLIP can target acidic diseased tissue. Here we investigate how coating of PEGylated liposomes with pHLIP might affect liposomal uptake by cells. The presence of pHLIP on the surface of PEGylated-liposomes enhanced membrane fusion and lipid exchange in a pH dependent fashion, leading to increase of cellular uptake and payload release, and inhibition of cell proliferation by liposomes containing ceramide. A novel type of pH-sensitive, "fusogenic" pHLIP-liposomes was developed, which could be used to selectively deliver various diagnostic and therapeutic agents to acidic diseased cells.


Assuntos
Lipossomos/química , Proteínas de Membrana/química , Neoplasias/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/administração & dosagem , Endocitose , Corantes Fluorescentes/administração & dosagem , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Polietilenoglicóis/química
9.
Sci Rep ; 3: 3560, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24356337

RESUMO

Proper balance of ions in intracellular and extracellular space is the key for normal cell functioning. Changes in the conductance of membranes for ions will lead to cell death. One of the main differences between normal and cancerous cells is the low extracellular pHe and the reverse pH gradient: intracellular pHi is higher than extracellular pHe. We report here pH-selective transfer of nano-pores to cancer cells for the dis-regulation of balance of monovalent cations to induce cell death at mildly acidic pHe as it is in most solid tumors. Our approach is based on the pH-sensitive fusion of cellular membrane with the liposomes containing gramicidin A forming cation-conductive ß-helix in the membrane. Fusion is promoted only at low extracellular pH by the pH (Low) Insertion Peptide (pHLIP®) attached to the liposomes. Gramicidin channels inserted into the cancer cells open flux of protons into the cytoplasm and disrupt balance of other monovalent cations, which induces cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Cátions Monovalentes/farmacologia , Gramicidina/farmacologia , Lipossomos/farmacologia , Neoplasias/patologia , Antibacterianos/farmacologia , Apoptose/fisiologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/patologia , Proliferação de Células , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mitocôndrias/patologia
10.
J Mol Biol ; 413(2): 359-71, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21888917

RESUMO

We have used pHLIP® [pH (low) insertion peptide] to study the roles of carboxyl groups in transmembrane (TM) peptide insertion. pHLIP binds to the surface of a lipid bilayer as a disordered peptide at neutral pH; when the pH is lowered, it inserts across the membrane to form a TM helix. Peptide insertion is reversed when the pH is raised above the characteristic pK(a) (6.0). A key event that facilitates membrane insertion is the protonation of aspartic acid (Asp) and/or glutamic acid (Glu) residues, since their negatively charged side chains hinder membrane insertion at neutral pH. In order to gain mechanistic understanding, we studied the membrane insertion and exit of a series of pHLIP variants where the four Asp residues were sequentially mutated to nonacidic residues, including histidine (His). Our results show that the presence of His residues does not prevent the pH-dependent peptide membrane insertion at ~pH 4 driven by the protonation of carboxyl groups at the inserting end of the peptide. A further pH drop leads to the protonation of His residues in the TM part of the peptide, which induces peptide exit from the bilayer. We also find that the number of ionizable residues that undergo a change in protonation during membrane insertion correlates with the pH-dependent insertion into the lipid bilayer and exit from the lipid bilayer, and that cooperativity increases with their number. We expect that our understanding will be used to improve the targeting of acidic diseased tissue by pHLIP.


Assuntos
Ácidos Carboxílicos/química , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Ultracentrifugação
11.
Biophys J ; 93(7): 2363-72, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17557792

RESUMO

The membrane peptide pH (low) insertion peptide (pHLIP) lives in three worlds, being soluble in aqueous solution at pH 7.4, binding to the surface of lipid bilayers, and inserting as a transbilayer helix at low pH. With low pH driving the process, pHLIP can translocate cargo molecules attached to its C-terminus via a disulfide and release them in the cytoplasm of a cell. Here we examine a key aspect of the mechanism, showing that pHLIP is monomeric in each of its three major states: soluble in water near neutral pH (state I), bound to the surface of a membrane near neutral pH (state II), and inserted across the membrane as an alpha-helix at low pH (state III). The peptide does not induce fusion or membrane leakage. The unique properties of pHLIP made it attractive for the biophysical investigation of membrane protein folding in vitro and for the development of a novel class of delivery peptides for the transport of therapeutic and diagnostic agents to acidic tissue sites associated with various pathological processes in vivo.


Assuntos
Biofísica/métodos , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Peptídeos/química , Cromatografia/métodos , Sistemas de Liberação de Medicamentos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Luz , Lipossomos/química , Dobramento de Proteína , Espalhamento de Radiação , Triptofano/química
12.
Biochemistry ; 46(3): 720-33, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17223693

RESUMO

The eosinophil cationic protein (ECP) is an antipathogen protein involved in the host defense system. ECP displays bactericidal and membrane lytic capacities [Carreras et al. (2003) Biochemistry 42, 6636-6644]. We have now characterized in detail the protein-membrane interaction process. All observed fluorescent parameters of the wild type and single-tryptophan-containing mutants, as well as the results of decomposition analysis of protein fluorescence, suggest that W10 and W35 belong to two distinct spectral classes I and III, respectively. Tryptophan residues were classified and assigned to distinct structural classes using statistical approaches based on the analysis of tryptophan microenvironment structural properties. W10 belongs to class I and is buried in a relative nonpolar, nonflexible protein environment, while W35 (class III) is fully exposed to free water molecules. Tryptophan solvent exposure and the depth of the protein insertion in the lipid bilayer were monitored by the degree of protein fluorescence quenching by KI and brominated phospholipids, respectively. Results indicate that W35 partially inserts into the lipid bilayer, whereas W10 does not. Further analysis by electron microscopy and dynamic light scattering indicates that ECP can destabilize and trigger lipid vesicle aggregation at a nanomolar concentration range, corresponding to about 1:1000 protein/lipid ratio. No significant leakage of the vesicle aqueous content takes place below that protein concentration threshold. The data are consistent with a membrane destabilization "carpet-like" mechanism.


Assuntos
Proteína Catiônica de Eosinófilo/química , Proteína Catiônica de Eosinófilo/metabolismo , Lipossomos/química , Proteína Catiônica de Eosinófilo/genética , Escherichia coli , Técnica de Fratura por Congelamento , Humanos , Bicamadas Lipídicas/química , Lipossomos/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Espectrometria de Fluorescência , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA