Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Orthod Craniofac Res ; 27(1): 151-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37565299

RESUMO

OBJECTIVE: Mandibular condylar cartilage (MCC) of the rat was examined with the Fourier-transform infrared (FITR) spectroscopic imaging to study the effects of ageing, oestrogen level and altered dietary loading on the structure of MCC. MATERIALS AND METHODS: The Sprague-Dawley rats (n = 96) aged 5 and 14 months were divided into 12 subgroups according to age, oestrogen status (ovariectomized [OVX], non-ovariectomized [non-OVX)]) and diet (hard, normal, soft). Specimens of the MCC were examined with FTIR spectroscopic imaging to quantify the distribution of collagens and proteoglycans. MCC was divided sagittally into three segments: anterior, most superior and posterior. From each segment, the collagen and proteoglycan contents at different depths of cartilage were statistically compared between the groups using an N-way analysis of variance (ANOVA). RESULTS: The amount of collagen content was significantly associated with old age in the deep layer of the anterior segment and in the middle layer of the posterior segment of MCC. In the deep layer of the most superior segment, the collagen content also increased with ageing. The amount of proteoglycan content increased significantly when dietary loading increased, and the oestrogen level decreased in the deep layer of the most superior segment of MCC. CONCLUSION: Ageing, oestrogen level and altered dietary loading have a significant effect on the location and content of collagens and proteoglycans of rat MCC. Ageing significantly increased the amount of collagen content in the superior and posterior segments, being highest in the older soft-diet rats. Decreased oestrogen levels and increased dietary loading increased the amount of proteoglycan content.


Assuntos
Cartilagem Articular , Côndilo Mandibular , Ratos , Animais , Ratos Sprague-Dawley , Cartilagem , Estrogênios , Colágeno , Envelhecimento , Proteoglicanas , Dieta
2.
Analyst ; 146(5): 1705-1713, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33295890

RESUMO

Dental caries is the most common oral disease that causes demineralization of the enamel and later of the dentin. Depth-wise assessment of the demineralization process could be used to help in treatment planning. In this study, we aimed to provide baseline information for the development of a Raman probe by characterizing the mineral composition of the dental tissues from large composition maps (6 × 3 mm2 with 15 µm step size) using Raman microspectroscopy. Ten human wisdom teeth with different stages of dental caries lesions were examined. All of the teeth were cut in half at representative locations of the caries lesions and then imaged with a Raman imaging microscope. The pre-processed spectral maps were combined into a single data matrix, and the spectra of the enamel, dentin, and caries were identified by K-means cluster analysis. Our results showed that unsupervised identification of dental caries is possible with the K-means clustering. The compositional analysis revealed that the carious lesions are less mineralized than the healthy enamel, and when the lesions extend into the dentin, they are even less mineralized. Furthermore, there were more carbonate imperfections in the mineral crystal lattice of the caries tissues than in healthy tissues. Interestingly, we observed gradients in the sound enamel showing higher mineralization and greater mineral crystal perfection towards the tooth surface. To conclude, our results provide a baseline for the methodological development aimed at clinical diagnostics for the early detection of active caries lesions.


Assuntos
Cárie Dentária , Desmineralização do Dente , Dente , Cárie Dentária/diagnóstico por imagem , Suscetibilidade à Cárie Dentária , Dentina , Humanos
3.
Appl Spectrosc ; 70(9): 1502-10, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27354404

RESUMO

Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.


Assuntos
Técnicas Fotoacústicas/métodos , Saliva/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adulto , Albuminas/análise , Feminino , Humanos , Modelos Lineares , Masculino , Tiocianatos/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA