Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Pollut ; 279: 116884, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743439

RESUMO

Rivers are viewed as major pathways of microplastic transport from terrestrial areas to marine ecosystems. However, there is paucity of knowledge on the dispersal pattern and transport of microplastics in river sediments. In this study, a three dimensional hydrodynamic and particle transport modelling framework was created to investigate the dispersal and transport processes of microplastic particles commonly present in the environment, namely, polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) in river sediments. The study outcomes confirmed that sedimental microplastics with lower density would have higher mobility. PE and PP are likely to be transported for a relatively longer distance, while PA and PET would likely accumulate close to source points. High water flow would transport more microplastics from source points, and high flow velocity in bottom water layer are suggested to facilitate the transport of sedimental microplastics. Considering the limited dispersal and transport, the study outcomes indicated that river sediments would act as a sink for microplastic pollutants instead of being a transport pathway. The patchiness associated with the hotspots of different plastic types is expected to provide valuable information for microplastic source tracking.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Rios , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 263(Pt A): 114490, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32283463

RESUMO

Microplastics pose threats to aquatic environments because they serve as hard-substrate for microbial community colonization and biofilm formation due to their long-life span and hydrophobic surface which can impact on aquatic ecosystems. However, the association between microplastics and other pollutants, particularly nutrients and metals in river sediments are largely unknown. In this study, microplastics abundance and hazard scores which are the risks arising from chemical compounds used for plastics manufacture, and the correlations between microplastics and the concentrations of total carbon (TC), total nitrogen (TN), total phosphorus (TP) and metals commonly present in the urban environment such as Al, As, Cr, Co, Cu, Fe, Mg, Mn, Ni, Cd, Se, Sr, Zn, Pb, in Brisbane River sediments were investigated. The study confirmed that the risk associated with microplastics is based on their monomer composition rather than the quantities present. Sediments having relatively higher abundance of microplastics with a relatively lower hazard score result in higher nutrient concentrations. The concentrations of metals in river sediments are more dependent on their original sources rather than the concentration of microplastics. Nevertheless, leachate from plastics should be considered in risk assessment in relation to the association between metals and plastics in aquatic environments.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Nutrientes , Plásticos , Rios
3.
Bone ; 127: 324-333, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260814

RESUMO

Mineralization of bone is a dynamic process, involving a complex interplay between cells, secreted macromolecules, signaling pathways, and enzymatic reactions; the dysregulation of bone mineralization may lead to serious skeletal disorders, including hypophosphatemic rickets, osteoporosis, and rheumatoid arthritis. Very few studies have reported the role of osteocytes - the most abundant bone cells in the skeletal system and the major orchestrators of bone remodeling in bone mineralization, which is owed to their nature of being deeply embedded in the mineralized bone matrix. The Wnt/ß-catenin signaling pathway is actively involved in various life processes including osteogenesis; however, the role of Wnt/ß-catenin signaling in the terminal mineralization of bone, especially in the regulation of osteocytes, is largely unknown. This research demonstrates that during the terminal mineralization process, the Wnt/ß-catenin pathway is downregulated, and when Wnt/ß-catenin signaling is activated in osteocytes, dendrite development is suppressed and the expression of dentin matrix protein 1 (DMP1) is inhibited. Aberrant activation of Wnt/ß-catenin signaling in osteocytes leads to the spontaneous deposition of extra-large mineralized nodules on the surface of collagen fibrils. The altered mineral crystal structure and decreased bonding force between minerals and the organic matrix indicate the inferior integration of minerals and collagen. In conclusion, Wnt/ß-catenin signaling plays a critical role in the terminal differentiation of osteocytes and as such, targeting Wnt/ß-catenin signaling in osteocytes may serve as a potential therapeutic approach for the management of bone-related diseases.


Assuntos
Calcificação Fisiológica , Osteócitos/metabolismo , Via de Sinalização Wnt , Animais , Biomarcadores/metabolismo , Linhagem Celular , Cristalização , Camundongos Endogâmicos C57BL , Osteócitos/ultraestrutura , Suínos
4.
J Pharm Sci ; 107(12): 3060-3069, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30098991

RESUMO

This study demonstrates the preparation and characterization of ibuprofen (IBP) microparticles with some excipients by a controlled crystallization technique with improved dissolution performance. Using the optimum concentrations pluronic F127, hydroxypropyl methyl cellulose, D-mannitol, and l-leucine in aqueous ethanol, the IBP microparticles were prepared. The dissolution tests were performed in phosphate buffer saline using a United States Pharmacopoeia dissolution tester at 37°C. The Raman spectroscopy was used to investigate the interactions and distribution of the IBP with the additives in the microcrystals. The prepared IBP microparticles showed higher dissolution compared to that of the smaller sized original IBP particles. The Raman data revealed that the excipients with a large number of hydroxyl groups distributed around the IBP particle in the crystal enhanced the dissolution of the drug by increasing the drug-solvent interaction presumably through hydrogen bonding. The Raman mapping technique gave an insight into the enhanced dissolution behavior of the prepared IBP microparticles, and such information will be useful for developing pharmaceutical formulations of hydrophobic drugs. The controlled crystallization was a useful technique to prepare complex crystals of IBP microparticles along with other additives to achieve the enhanced dissolution profile.


Assuntos
Anti-Inflamatórios não Esteroides/química , Cristalização/métodos , Composição de Medicamentos/métodos , Ibuprofeno/química , Precipitação Química , Excipientes/química , Liofilização , Derivados da Hipromelose/química , Leucina/química , Manitol/química , Tamanho da Partícula , Poloxâmero/química , Solubilidade , Solventes/química , Análise Espectral Raman
5.
Water Res ; 112: 93-99, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28160700

RESUMO

Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 µm-500 µm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with long-term monitoring recommended to further characterise microplastics in wastewater.


Assuntos
Águas Residuárias/química , Poluentes Químicos da Água , Cosméticos , Monitoramento Ambiental , Plásticos
6.
J Mater Sci Mater Med ; 18(9): 1701-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17483886

RESUMO

Fluoro substituted hydroxyapatite (FHAp) samples were prepared by a cyclic pH method. Both calcined and uncalcined samples were subjected to elemental analysis (F, Ca, P) and X-ray diffraction (XRD) analysis to verify composition and phase purity. Good correlation between a-axis parameters and fluoride ion content was found for calcined samples, however, for uncalcined samples the fluoride ion content was higher than estimated from the a-axis values. Fourier transform infra red (FT-IR) spectroscopy analysis of the calcined samples showed OH band shifts and splitting in accordance with F-HO interactions affecting the OH vibration. We conclude that the OH libration (620-780 cm(-1) range) is more suited for estimation of fluoride ion content than the OH stretching. In contrast, uncalcined samples all displayed FT-IR spectra similar to that of hydroxyapatite (HAp) despite the presence of fluoride ions (18-73%). FT-IR emission spectroscopy was used to probe the changes occurring in the FT-IR spectra of HAp and FHAp samples upon heating. Interpretation of the spectral changes occurring during heating to 1,000 degrees C and subsequent cooling is given. Room temperature spectra of samples heated to various temperatures was used to determine the temperature necessary to produce FT-IR spectra displaying the expected OH bands. A model accounting for the combined observations is proposed.


Assuntos
Materiais Biocompatíveis/química , Hidroxiapatitas/química , Materiais Biocompatíveis/síntese química , Fluoretos/química , Temperatura Alta , Hidroxiapatitas/síntese química , Teste de Materiais , Estrutura Molecular , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA