Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3314-3329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38440912

RESUMO

BACKGROUND: Previous studies on the effects of microplastics (MPs) on bone in early development are limited. This study aimed to investigate the adverse effects of MPs on bone in young rats and the potential mechanism. METHODS: Three-week-old female rats were orally administered MPs for 28 days, and endoplasmic reticulum (ER) stress inhibitor salubrinal (SAL) and ER stress agonist tunicamycin (TM) were added to evaluate the effect of ER stress on toxicity of MPs. The indicators of growth and plasma markers of bone turnover were evaluated. Tibias were analyzed using micro-computed tomography (micro-CT). Histomorphological staining of growth plates was performed, and related gene expression of growth plate chondrocytes was tested. RESULTS: After exposure of MPs, the rats had decreased growth, shortened tibial length, and altered blood calcium and phosphorus metabolism. Trabecular bone was sparse according to micro-CT inspection. In the growth plate, the thickness of proliferative zone substantial reduced while the thickness of hypertrophic zone increased significantly, and the chondrocytes were scarce and irregularly arranged according to tibial histological staining. The transcription of the ER stress-related genes BIP, PERK, ATF4, and CHOP dramatically increased, and the transcription factors involved in chondrocyte proliferation, differentiation, apoptosis, and matrix secretion were aberrant according to RT-qPCR and western blotting. Moreover, the addition of TM showed higher percentage of chondrocyte death. Administration of SAL alleviated all of the MPs-induced symptoms. CONCLUSION: These results indicated that MPs could induce growth retardation and longitudinal bone damage in early development. The toxicity of MPs may attribute to induced ER stress and impaired essential processes of the endochondral ossification after MPs exposure.


Assuntos
Estresse do Retículo Endoplasmático , Lâmina de Crescimento , Microplásticos , Poliestirenos , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Feminino , Ratos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Tíbia/patologia
2.
Drug Dev Ind Pharm ; 41(4): 692-702, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24669975

RESUMO

The objectives of this work was preparation and evaluation of the mucoadhesive elementary osmotic pump tablets of trimetazidine hydrochloride to achieve desired controlled release action and augmentation of oral drug absorption. The drug-loaded core tablets were prepared employing the suitable tableting excipients and coated with polymeric blend of ethyl cellulose and hydroxypropyl methylethylcellulose E5 (4:1). The prepared tablets were characterized for various quality control tests and in vitro drug release. Evaluation of drug release kinetics through model fitting suggested the Fickian mechanism of drug release, which was regulated by osmosis and diffusion as the predominant mechanism. Evaluation of mucoadhesion property using texture analyzer suggested good mucoadhesion potential of the developed osmotic systems. Solid state characterization using Fourier-transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction spectroscopy confirmed the absence of any physiochemical incompatibilities between drug and excipients. Scanning electron microscopy analysis showed the smooth surface appearance of the coated tablets with intact polymeric membrane without any fracture. In vivo pharmacokinetic studies in rabbits revealed 3.01-fold enhancement in the oral bioavailability vis-à-vis the marketed formulation (Vastarel MR®). These studies successfully demonstrate the bioavailability enhancement potential of the mucoadhesive elementary osmotic pumps as novel therapeutic systems for other drugs too.


Assuntos
Sistemas de Liberação de Medicamentos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Trimetazidina/administração & dosagem , Vasodilatadores/administração & dosagem , Adesividade , Animais , Disponibilidade Biológica , Celulose/análogos & derivados , Celulose/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Excipientes/química , Derivados da Hipromelose/química , Masculino , Pressão Osmótica , Coelhos , Reprodutibilidade dos Testes , Propriedades de Superfície , Comprimidos , Trimetazidina/análise , Trimetazidina/química , Trimetazidina/farmacocinética , Vasodilatadores/análise , Vasodilatadores/química , Vasodilatadores/farmacocinética
3.
J Pharm Pharmacol ; 63(2): 141-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21235578

RESUMO

OBJECTIVES: Carbon nanotubes (CNTs) have attracted much attention by researchers worldwide in recent years for their small dimensions and unique architecture, and for having immense potential in nanomedicine as biocompatible and supportive substrates, as a novel tool for the delivery of therapeutic molecules including peptides, RNA and DNA, and also as sensors, actuators and composites. KEY FINDINGS: CNTs have been employed in the development of molecular electronic, composite materials and others due to their unique atomic structure, high surface area-to-volume ratio and excellent electronic, mechanical and thermal properties. Recently they have been exploited as novel nanocarriers in drug delivery systems and biomedical applications. Their larger inner volume as compared with the dimensions of the tube and easy immobilization of their outer surface with biocompatible materials make CNTs a superior nanomaterial for drug delivery. Literature reveals that CNTs are versatile carriers for controlled and targeted drug delivery, especially for cancer cells, because of their cell membrane penetrability. SUMMARY: This review enlightens the biomedical application of CNTs with special emphasis on utilization in controlled and targeted drug delivery, as a diagnostics tool and other possible uses in therapeutic systems. The review also focuses on the toxicity aspects of CNTs, and revealed that genotoxic potential, mutagenic and carcinogenic effects of different types of CNTs must be explored and overcome by formulating safe biomaterial for drug delivery. The review also describes the regulatory aspects and clinical and market status of CNTs.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Nanomedicina/métodos , Nanotubos de Carbono/química , Animais , Preparações de Ação Retardada , Humanos
4.
Recent Pat Drug Deliv Formul ; 3(2): 105-24, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19519571

RESUMO

Transdermal drug delivery system has been accepted as potential non-invasive route of drug administration, with advantages of avoidance of the first-pass metabolism, sustained therapeutic action and better patient compliance, though, its prevalent use is restricted due to excellent impervious nature of skin. It is the greatest challenge for researchers to surmount the inherent limitations imposed by stratum corneum of skin, for enhanced transdermal drug delivery to achieve systemic therapeutic concentration. Thus, many approaches have been attempted to perturb skin barrier and enhance the transdermal delivery of drug. The major approaches for enhancing transdermal delivery are physical enhancers (ultrasound, iontophoresis, electroporation, magnetophoresis, microneedle), vesicles, particulate systems (liposome, niosome, transfersome, microemulsion, solid lipid nanoparticle) and chemical enhancers (sulphoxides, azones, glycols, alkanols, terpenes etc.). The present review explores recent patents on techniques employed to breach the skin barrier for drug permeation along with their penetration enhancement mechanisms.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Pele/metabolismo , Adjuvantes Farmacêuticos , Administração Cutânea , Química Farmacêutica/métodos , Eletroporação/métodos , Emulsões/química , Humanos , Iontoforese , Lipossomos/metabolismo , Nanopartículas , Patentes como Assunto , Permeabilidade , Preparações Farmacêuticas/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA