Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 3163-3168, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38651279

RESUMO

Studies have shown that poly(adenine) DNA and RNA strands protonate at a low pH to form self-associating duplexes; however, the nanoscopic morphology of these structures is unclear. Here, we use Transition Electron Microscopy (TEM), Atomic Force Microscopy (AFM), dynamic light scattering (DLS), and fluorescence spectroscopy to show that both ribose identity (DNA or RNA) and assembly conditions (thermal or room-temperature annealing) dictate unique hierarchical structures for poly(adenine) sequences at a low pH. We show that while the thermodynamic product of protonating poly(adenine) DNA is a discrete dimer of two DNA strands, the kinetic product is a supramolecular polymer that branches and aggregates to form micron-diameter superstructures. In contrast, we find that protonated poly(A) RNA polymerizes into micrometer-length, twisted fibers under the same conditions. These divergent hierarchical morphologies highlight the amplification of subtle chemical differences between RNA and DNA into unique nanoscale behaviors. With the use of poly(adenine) strands spanning vaccine technologies, sensing, and dynamic biotechnology, understanding and controlling the underlying assembly pathways of these structures are critical to developing robust, programmable nanotechnologies.


Assuntos
DNA , Poli A , RNA , RNA/química , DNA/química , Poli A/química , Prótons , Polímeros/química , Microscopia de Força Atômica , Concentração de Íons de Hidrogênio
2.
J Am Chem Soc ; 144(27): 12272-12279, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762655

RESUMO

The self-assembly of block copolymers is often rationalized by structure and microphase separation; pathways that diverge from this parameter space may provide new mechanisms of polymer assembly. Here, we show that the sequence and length of single-stranded DNA directly influence the self-assembly of sequence-defined DNA block copolymers. While increasing the length of DNA led to predictable changes in self-assembly, changing only the sequence of DNA produced three distinct structures: spherical micelles (spherical nucleic acids, SNAs) from flexible poly(thymine) DNA, fibers from semirigid mixed-sequence DNA, and networked superstructures from rigid poly(adenine) DNA. The secondary structure of poly(adenine) DNA strands drives a temperature-dependent polymerization and assembly mechanism: copolymers stored in an SNA reservoir form fibers after thermal activation, which then aggregate upon cooling to form interwoven networks. DNA is often used as a programming code that aids in nanostructure addressability and function. Here, we show that the inherent physical and chemical properties of single-stranded DNA sequences also make them an ideal material to direct self-assembled morphologies and select for new methods of supramolecular polymerization.


Assuntos
Ácidos Nucleicos , Adenina , Sequência de Bases , DNA/química , DNA de Cadeia Simples , Polímeros/química
3.
J Am Chem Soc ; 142(17): 7749-7753, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32275828

RESUMO

Many useful principles of self-assembly have been elucidated through studies of systems where multiple components combine to create a single structure. More complex systems, where multiple product structures self-assemble in parallel from a shared set of precursors, are also of great interest, as biological systems exhibit this behavior. The greater complexity of such systems leads to an increased likelihood that discrete species will not be formed, however. Here we show how the kinetics of self-assembly govern the formation of multiple metal-organic architectures from a mixture of five building blocks, preventing the formation of a discrete structure of intermediate size. By varying ligand symmetry, denticity, and orientation, we explore how five distinct polyhedra-a tetrahedron, an octahedron, a cube, a cuboctahedron, and a triangular prism-assemble in concert around CoII template ions. The underlying rules dictating the organization of assemblies into specific shapes are deciphered, explaining the formation of only three discrete entities when five could form in principle.

4.
Nat Commun ; 15(1): 4384, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782917

RESUMO

Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.


Assuntos
DNA , Temperatura Alta , Polímeros , DNA/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA