Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2309822120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725651

RESUMO

External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.


Assuntos
Fontes Geradoras de Energia , Polímeros , Transdutores , Extremidade Superior
2.
J Am Chem Soc ; 144(49): 22391-22396, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36459076

RESUMO

Multimodal mechanophores that exhibit complex mechanochromic behavior beyond the typical binary response are capable of distinguishing between multiple stress states through discrete changes in color. Naphthodipyran photoswitches contain two pyran rings fused to a central naphthalene core and represent a potentially promising framework for multimodal reactivity. However, the concurrent ring opening of both pyran moieties has previously proven inaccessible via photochemical activation. Here, we demonstrate that mechanical force supplied to naphthodipyran through covalently linked polymer chains generates the elusive dual ring-opened dimerocyanine product with unique near-infrared absorption properties. Trapping with boron trifluoride renders the merocyanine dyes thermally persistent and reveals apparent sequential ring-opening behavior that departs from the reactivity of previously studied mechanophores under the high strain rates imposed by ultrasound-induced solvodynamic chain extension.


Assuntos
Fenômenos Mecânicos , Polímeros , Polímeros/química , Piranos
3.
Nature ; 540(7633): 363-370, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974778

RESUMO

The lifetime of man-made materials is controlled largely by the wear and tear of everyday use, environmental stress and unexpected damage, which ultimately lead to failure and disposal. Smart materials that mimic the ability of living systems to autonomously protect, report, heal and even regenerate in response to damage could increase the lifetime, safety and sustainability of many manufactured items. There are several approaches to achieving these functions using polymer-based materials, but making them work in highly variable, real-world situations is proving challenging.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Regeneração
4.
J Am Chem Soc ; 136(42): 15010-5, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25290917

RESUMO

Viruses have evolved specialized mechanisms to efficiently transport nucleic acids and other biomolecules into specific host cells. They achieve this by performing a coordinated series of complex functions, resulting in delivery that is far more efficient than existing synthetic delivery mechanisms. Inspired by these natural systems, we describe a process for synthesizing chemically defined molecular constructs that likewise achieve targeted delivery through a series of coordinated functions. We employ an efficient "click chemistry" technique to synthesize aptamer-polymer hybrids (APHs), coupling cell-targeting aptamers to block copolymers that secure a therapeutic payload in an inactive state. Upon recognizing the targeted cell-surface marker, the APH enters the host cell via endocytosis, at which point the payload is triggered to be released into the cytoplasm. After visualizing this process with coumarin dye, we demonstrate targeted killing of tumor cells with doxorubicin. Importantly, this process can be generalized to yield APHs that specifically target different surface markers.


Assuntos
Aptâmeros de Nucleotídeos/química , Portadores de Fármacos/química , Polímeros/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Biomarcadores/metabolismo , Química Click , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Células MCF-7
5.
Nano Lett ; 11(9): 3946-50, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21800917

RESUMO

Self-assembling peptide amphiphiles (PAs) have been extensively used in the development of novel biomaterials. Because of their propensity to form cylindrical micelles, their use is limited in applications where small spherical micelles are desired. Here we present a platform method for controlling the self-assembly of biofunctional PAs into spherical 50 nm particles using dendrimers as shape-directing scaffolds. This templating approach results in biocompatible, stable protein-like assemblies displaying peptides with native secondary structure and biofunctionality.


Assuntos
Nanosferas/química , Nanotecnologia/métodos , Peptídeos/química , Materiais Biocompatíveis/química , Biomimética , Dendrímeros/química , Células HeLa , Humanos , Micelas , Estrutura Secundária de Proteína , Proteínas/química
6.
ACS Macro Lett ; 11(6): 733-738, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35608186

RESUMO

Despite recent advances in polymer mechanochemistry, a more complete understanding of the factors that dictate the ultrasound-induced mechanochemical activation efficiency of mechanophores is necessary. Here, we examine how the identity of a mechanophore, and hence its unique force-coupled reactivity, affects the competition between mechanophore activation and nonspecific polymer backbone scission. Polymers incorporating distinct mechanophores but with putatively similar "chain-centeredness" exhibit widely different mechanochemical activation efficiencies. Furthermore, we employ mechanophores that can be orthogonally cleaved following ultrasonication using heat or light to report on the degree of nonspecific backbone scission that occurs for different mechanophore-containing polymers subjected to ultrasound-induced mechanical force. Our results illustrate that the identity of the mechanophore as well as its position in the polymer chain are inextricably important parameters that together control the selectivity of mechanophore activation during ultrasonication.


Assuntos
Fenômenos Mecânicos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA