Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 17227-17235, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36379467

RESUMO

Fluids leaked from oil and gas wells often originate from their surface casing─a steel pipe installed beneath the deepest underlying source of potable groundwater that serves as the final barrier around the well system. In this study, we analyze a regulatory dataset of surface casing geochemical samples collected from 2573 wells in northeastern Colorado─the only known publicly available dataset of its kind. Thermogenic gas was present in the surface casings of 96.2% of wells with gas samples. Regulatory records indicate that 73.3% of these wells were constructed to isolate the formation from which the gas originated with cement. This suggests that gas migration into the surface casing annulus predominantly occurs through compromised barriers (e.g., steel casings or cement seals), indicative of extensive integrity issues in the region. Water was collected from 22.6% of sampled surface casings. Benzene, toluene, ethylbenzene, and xylenes were detected in 99.7% of surface casing water samples tested for these compounds, which may be due to the presence of leaked oil, natural gas condensate, or oil-based drilling mud. Our findings demonstrate the value of incorporating surface casing geochemical analysis in well integrity monitoring programs to identify integrity issues and focus leak mitigation efforts.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poços de Água , Água Subterrânea/química , Campos de Petróleo e Gás , Gás Natural/análise , Aço/análise , Água , Monitoramento Ambiental
2.
Environ Sci Process Impacts ; 21(2): 256-268, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30318550

RESUMO

Polyethylene glycols (PEGs) and polypropylene glycols (PPGs) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver-Julesburg Basin wells at early and late production. High-resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for PEGs (<0.4-1.1 d) compared to PPGs (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight into the differences between the degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.


Assuntos
Biodegradação Ambiental , Água Subterrânea/química , Água Subterrânea/microbiologia , Polietilenoglicóis/química , Polímeros/química , Propilenoglicóis/química , Microbiologia da Água , Poluentes Químicos da Água/química , Fraturamento Hidráulico , Metagenoma , Campos de Petróleo e Gás , RNA Ribossômico 16S/genética , Águas Residuárias/química
3.
Biomacromolecules ; 9(3): 804-11, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18257555

RESUMO

We describe the construction of enzymatic nanoreactors through noncovalent envelopment of a glycoprotein by amphiphilic linear-dendritic AB or ABA copolymers. The synthetic procedure is based on the regioselective adsorption of dendritic poly(benzyl ether)-block-linear poly(ethylene glycol)-block-dendritic poly(benzyl ether) or linear poly(ethylene oxide)-block-dendritic poly(benzyl ether) copolymers onto the oxidative enzyme laccase from Trametes versicolor in aqueous medium. The complexes formed have improved catalytic activity compared with the native enzyme (77-85 nkat/mL vs 60 nkat/mL, respectively) and are more stable at elevated temperatures up to 70 degrees C. Experiments with deglycosylated laccase confirm that the glycoside fragments in the native enzyme serve as the anchor sites for the linear-dendritic copolymers. The enzymatic nanoreactors are able to effectively oxidize series of substrates: phenolic compounds (syringaldazine) and hydrophobic polyaromatic hydrocarbons (anthracene and benzo[a]pyrene) under "green" chemistry conditions.


Assuntos
Reatores Biológicos , Dendrímeros/química , Lacase/química , Nanotecnologia/métodos , Biodegradação Ambiental , Catálise , Dendrímeros/síntese química , Glicoproteínas/química , Oxirredução , Fenóis/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polietilenoglicóis/química , Polyporales/enzimologia
4.
Anal Chem ; 79(6): 2221-9, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17288407

RESUMO

Gold nanoparticles have shown great promise as therapeutics, therapeutic delivery vectors, and intracellular imaging agents. For many biomedical applications, selective cell and nuclear targeting are desirable, and these remain a significant practical challenge in the use of nanoparticles in vivo. This challenge is being addressed by the incorporation of cell-targeting peptides or antibodies onto the nanoparticle surface, modifications that frequently compromise nanoparticle stability in high ionic strength biological media. We describe herein the assembly of poly(ethylene glycol) (PEG) and mixed peptide/PEG monolayers on gold nanoparticle surfaces. The stability of the resulting bioconjugates in high ionic strength media was characterized as a function of nanoparticle size, PEG length, and monolayer composition. In total, three different thiol-modified PEGs (average molecular weight (MW), 900, 1500, and 5000 g mol-1), four particle diameters (10, 20, 30, and 60 nm), and two cell-targeting peptides were explored. We found that nanoparticle stability increased with increasing PEG length, decreasing nanoparticle diameter, and increasing PEG mole fraction. The order of assembly also played a role in nanoparticle stability. Mixed monolayers prepared via the sequential addition of PEG followed by peptide were more stable than particles prepared via simultaneous co-adsorption. Finally, the ability of nanoparticles modified with mixed PEG/RME (RME = receptor-mediated endocytosis) peptide monolayers to target the cytoplasm of HeLa cells was quantified using inductively coupled plasma optical emission spectrometry (ICP-OES). Although it was anticipated that the MW 5000 g mol-1 PEG would sterically block peptides from access to the cell membrane compared to the MW 900 PEG, nanoparticles modified with mixed peptide/PEG 5000 monolayers were internalized as efficiently as nanoparticles containing mixed peptide/PEG 900 monolayers. These studies can provide useful cues in the assembly of stable peptide/gold nanoparticle bioconjugates capable of being internalized into cells.


Assuntos
Ouro/química , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Sequência de Aminoácidos , Endocitose , Células HeLa , Humanos , Estrutura Molecular , Peso Molecular , Peptídeos/síntese química , Espectrometria de Fluorescência , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA