Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 116(12): 3372-3381, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433066

RESUMO

Bacterial cellulose nanofiber (CNF) is a polymer with a wide range of potential industrial applications. Several Komagataeibacter species, including Komagataeibacter xylinus as a model organism, produce CNF. However, the industrial application of CNF has been hampered by inefficient CNF production, necessitating metabolic engineering for the enhanced CNF production. Here, we present complete genome sequence and a genome-scale metabolic model KxyMBEL1810 of K. xylinus DSM 2325 for metabolic engineering applications. Genome analysis of this bacterium revealed that a set of genes associated with CNF biosynthesis and regulation were present in this bacterium, which were also conserved in another six representative Komagataeibacter species having complete genome information. To better understand the metabolic characteristics of K. xylinus DSM 2325, KxyMBEL1810 was reconstructed using genome annotation data, relevant computational resources and experimental growth data generated in this study. Random sampling and correlation analysis of the KxyMBEL1810 predicted pgi and gnd genes as novel overexpression targets for the enhanced CNF production. Among engineered K. xylinus strains individually overexpressing heterologous pgi and gnd genes, either from Escherichia coli or Corynebacterium glutamicum, batch fermentation of a strain overexpressing the E. coli pgi gene produced 3.15 g/L of CNF in a complex medium containing glucose, which was the best CNF concentration achieved in this study, and 115.8% higher than that (1.46 g/L) obtained from the control strain. Genome sequence data and KxyMBEL1810 generated in this study should be useful resources for metabolic engineering of K. xylinus for the enhanced CNF production.


Assuntos
Celulose , Genoma Bacteriano , Genômica , Bacilos Gram-Positivos Asporogênicos Irregulares , Metabolômica , Nanofibras , Celulose/biossíntese , Celulose/genética , Bacilos Gram-Positivos Asporogênicos Irregulares/genética , Bacilos Gram-Positivos Asporogênicos Irregulares/metabolismo
2.
Microb Biotechnol ; 10(5): 1181-1185, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28695653

RESUMO

Life cycle of bacterial cellulose. Sustainable production and consumption of bio-based products are showcased using bacterial cellulose as an example.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Biopolímeros/biossíntese , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA