RESUMO
Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to â¼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from â¼0.5 to â¼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed â¼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to â¼5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.
Assuntos
Eritema Infeccioso/genética , Evolução Molecular , Genoma Viral , Genótipo , Parvovirus B19 Humano/genética , Filogenia , Análise de Sequência de DNA , Eritema Infeccioso/história , História do Século XIX , História do Século XX , HumanosRESUMO
Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs derive from a secondary pre-contact migration of dogs distinct from Palaeo-Inuit dogs, and probably aided the Inuit expansion across the North American Arctic beginning around 1000 BP.
Assuntos
Distribuição Animal , Cães/anatomia & histologia , Cães/genética , Genoma Mitocondrial , Fenótipo , Alaska , Animais , Arqueologia , Regiões Árticas , Canadá , DNA Antigo/análise , DNA Mitocondrial/análise , Groenlândia , Migração HumanaRESUMO
Much of the fossil record for dogs consists of mandibles. However, can fossil canid mandibles be reliably identified as dogs or wolves? 3D geometric morphometric analysis correctly classifies 99.5% of the modern dog and wolf mandibles. However, only 4 of 26 Ust'-Polui fossil mandibles, a Russian Arctic site occupied from 250BCE to 150CE, were identified as dogs and none of the 20 Ivolgin mandibles, an Iron Age site in southern Russia, were identified as dogs. Three of the Ust'-Polui mandibles and 8 of the Ivolgin mandibles were identified as wolves. In contrast, all 12 Ivolgin skulls and 5 Ust'-Polui skulls were clearly identified as dogs. Only the classification of the UP6571 skull as a dog (Dog Posterior Probability = 1.0) was not supported by the typical probability. Other evidence indicates these canids were domesticated: they were located within human dwellings, remains at both sites have butchery marks indicating that they were consumed, and isotope analysis of canid and human remains from Ust'-Polui demonstrate that both were consuming freshwater protein; indicating that the humans were feeding the canids. Our results demonstrate that the mandible may not evolve as rapidly as the cranium and the mandible is not reliable for identifying early dog fossils.
RESUMO
Archaeological dog remains from many areas clearly show that these animals suffered tooth fractures, tooth loss, trauma, and dental defects during their lives. Relatively little research has explored the meanings of these patterns, particularly for ancient dog remains from small-scale societies of the North. One limiting issue is the lack of comparative data on dental health and experiences of trauma among northern wolves and dogs. This paper examines tooth loss, tooth fracture, enamel hypoplasia, and cranial trauma in a large sample of historic dog and wolf remains from North America and Northern Russia. The data indicate that the dogs more commonly experienced tooth loss and tooth fracture than the wolves, despite reportedly being fed mostly soft foods such as blubber and fish. The higher rates observed in the dogs likely is a result of food stress and self-provisioning through scavenging. The ability to self-provision was likely important for the long-term history of dog use in the north. Dogs also more commonly experienced cranial fractures than wolves, particularly depression fractures on their frontal bones, which were likely the result of blows from humans. Hypoplastic lesions are rare in both wolves and dogs, and probably result from multiple causes, including food stress, disease, and trauma.