Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 321: 363-371, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32061622

RESUMO

Lung cancer is one of the major causes of cancer-related deaths worldwide. Stimuli-responsive polymers and nanoparticles, which respond to exogenous or endogenous stimuli in the tumor microenvironment, have been widely investigated for spatiotemporal chemotherapeutic drug release applications for cancer chemotherapy. We developed glutathione (GSH)-responsive polyurethane nanoparticles (GPUs) using a GSH-cleavable disulfide bond containing polyurethane that responds to elevated levels of GSH within lung cancer cells. The polyurethane nanoparticles were fabricated using a single emulsion and mixed organic solvent method. Cisplatin-loaded GSH-sensitive nanoparticles (CGPU) displayed a GSH-dose dependent release of cisplatin. In addition, a significant reduction in in vitro survival fraction of A549 lung cancer cells was observed compared to free cisplatin of equivalent concentration (survival fraction of ~0.5 and ~0.7, respectively). The in vivo biodistribution studies showed localization of fluorescently labeled GPUs (~7% of total injected dose per gram tissue) in the lung tumor regions after mouse-tail IV injections in xenograft A549 lung tumor models. The animals exposed to CGPUs also exhibited the inhibition of lung tumor growth compared to animals administered with saline (tumor growth rate of 1.5 vs. 13 in saline) and free cisplatin (tumor growth rate of 5.9) in mouse xenograft A549 lung tumor models within 14 days. These nanoparticles have potential to be used for on-demand drug release for an enhanced chemotherapy to effectively treat lung cancer.


Assuntos
Antineoplásicos , Portadores de Fármacos , Glutationa , Neoplasias Pulmonares , Nanopartículas , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Portadores de Fármacos/uso terapêutico , Glutationa/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Poliuretanos , Distribuição Tecidual , Microambiente Tumoral
2.
J Biomed Mater Res A ; 103(5): 1632-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25088162

RESUMO

One of the many issues of using radiosensitizers in a clinical setting is timing daily radiation treatments to coincide with peak drug concentration in target tissue. To overcome this deficit, we have synthesized a novel nanoparticle (NP) system consisting of poly (lactic-co-glycolic acid) (PLGA) NPs conjugated with prostate cancer cell penetrating peptide-R11 and encapsulated with a potent radio-sensitizer 8-dibenzothiophen-4-yl-2-morpholin-4-yl-chromen-4-one (NU7441) to allow prostate cancer-specific targeting and sustained delivery over 3 weeks. Preliminary characterization studies showed that the R11-conjugated NPs (R11-NU7441 NPs) had an average size of about 274 ± 80 nm and were stable for up to 5 days in deionized water and serum. The NPs were cytocompatible with immortalized prostate cells (PZ-HPV-7). Further, the particles showed a bi-phasic release of encapsulated NU7441 and were taken up by PC3 prostate cancer cells in a dose- and magnetic field-dependent manner while not being taken up in nonprostate cancer cell lines. In addition, R11-NU7441 NPs were effective radiation sensitizers of prostate cancer cell lines in vitro. These results thus demonstrate the potential of R11-conjugated PLGA NPs as novel platforms for targeted radiosensitization of prostate cancer cells.


Assuntos
Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Neoplasias da Próstata/tratamento farmacológico , Radiossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Cromonas/uso terapêutico , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Cinética , Masculino , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA