Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31380293

RESUMO

Invasive fungal pathogens cause more than 300 million serious human infections and 1.6 million deaths per year. A clearer understanding of the mechanisms by which these fungi cause disease is needed to identify novel targets for urgently needed therapies. Kinases are key components of the signaling and metabolic circuitry of eukaryotic cells, which include fungi, and kinase inhibition is currently being exploited for the treatment of human diseases. Inhibiting evolutionarily divergent kinases in fungal pathogens is a promising avenue for antifungal drug development. One such group of kinases is the phospholipase C1-dependent inositol polyphosphate kinases (IPKs), which act sequentially to transfer a phosphoryl group to a pre-phosphorylated inositol sugar (IP). This review focuses on the roles of fungal IPKs and their IP products in fungal pathogenicity, as determined predominantly from studies performed in the model fungal pathogen Cryptococcus neoformans, and compares them to what is known in non-pathogenic model fungi and mammalian cells to highlight potential drug targeting opportunities.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Fosfatos de Inositol/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fatores de Virulência/metabolismo , Animais , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Inositol/metabolismo , Fosfatos de Inositol/metabolismo , Terapia de Alvo Molecular/métodos , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Açúcares/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Virulência
2.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848441

RESUMO

The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.


Assuntos
Capsídeo/metabolismo , DNA Viral/biossíntese , HIV-1/metabolismo , Polímeros/metabolismo , Trifosfato de Adenosina/metabolismo , Capsídeo/ultraestrutura , Células HEK293 , HIV-1/ultraestrutura , Humanos , Nucleotídeos/metabolismo , Polieletrólitos , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa/efeitos dos fármacos , Transcrição Reversa/genética , Subtilisina/metabolismo , Vírion/efeitos dos fármacos , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA