Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 1058-1067, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181450

RESUMO

mRNA-based therapeutics are revolutionizing the landscape of medical interventions. However, the short half-life of mRNA and transient protein expression often limits its therapeutic potential, demanding high treatment doses or repeated administrations. Self-replicating RNA (RepRNA)-based treatments could offer enhanced protein production and reduce the required dosage. Here, we developed polymeric micelles based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) block copolymers modified with phenylalanine (Phe) moieties via biodegradable ester bonds for the efficient delivery of RepRNA. These polymers successfully encapsulated RepRNA into sub-100 nm micelles assisted by the hydrophobicity of the Phe moieties and their ability to π-π stack with the bases in RepRNA. The micelles made from Phe-modified PEG-PG (PEG-PG(Phe)) effectively maintained the integrity of the loaded RepRNA in RNase-rich serum conditions. Once taken up by cells, the micelles triggered a pH-responsive membrane disruption, promoted by the strong protonation of the amino groups at endosomal pH, thereby delivering the RepRNA to the cytosol. The system induced strong protein expression in vitro and outperformed commercial transfecting reagents in vivo, where it resulted in enhanced and long-lasting protein expression.


Assuntos
Micelas , Fenilalanina , RNA , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Polímeros/química , Polietilenoglicóis/química , RNA Mensageiro , Portadores de Fármacos/química
2.
Acta Biomater ; 140: 674-685, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896268

RESUMO

Epithelial barriers that seal cell gaps by forming tight junctions to prevent the free permeation of nutrients, electrolytes, and drugs, are essential for maintaining homeostasis in multicellular organisms. The development of nanocarriers that can permeate epithelial tissues without compromising barrier function is key for establishing a safe and efficient drug delivery system (DDS). Previously, we have demonstrated that a water-soluble phospholipid-mimicking random copolymer, poly(2-methacryloyloxyethyl phosphorylcholine30-random-n­butyl methacrylate70) (PMB30W), enters the cytoplasm of live cells by passive diffusion manners, without damaging the cell membranes. The internalization mechanism was confirmed to be amphiphilicity-induced membrane fusion. In the present study, we demonstrated energy-independent permeation of PMB30W through the model epithelial barriers of Madin-Darby canine kidney (MDCK) cell monolayers in vitro. The polymer penetrated epithelial MDCK monolayers via transcellular pathways without breaching the barrier functions. This was confirmed by our unique assay that can monitor the leakage of the proton as the smallest indicator across the epithelial barriers. Moreover, energy-independent transepithelial permeation was achieved when insulin was chemically conjugated with the phospholipid-mimicking nanocarrier. The bioactivity of insulin as a growth factor was found to be maintained even after translocation. These fundamental findings may aid the establishment of transepithelial DDS with advanced drug efficiency and safety. STATEMENT OF SIGNIFICANCE: A nanocarrier that can freely permeate epithelial tissues without compromising barrier function is key for successful DDS. Existing strategies mainly rely on paracellular transport associated with tight junction breakdown or transcellular transport via transporter recognition-mediated active uptake. These approaches raise concerns about efficiency and safety. In this study, we performed non-endocytic permeation of phospholipid-mimicking polymers through the model epithelial barriers in vitro. The polymer penetrated via transcytotic pathways without breaching the barriers of biomembrane and tight junction. Moreover, transepithelial permeation occurred when insulin was covalently attached to the nanocarrier. The bioactivity of insulin was maintained even after translocation. The biomimetic design of nanocarrier may realize safe and efficient transepithelial DDS.


Assuntos
Insulina , Polímeros , Animais , Cães , Células Epiteliais/metabolismo , Insulina/química , Fosfolipídeos/metabolismo , Polímeros/metabolismo , Junções Íntimas/metabolismo , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA