Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 233(10): 6705-6713, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323717

RESUMO

Human adipose tissue has been identified as a viable alternative source for mesenchymal stem cells. SADSCs were isolated from human scalp biopsy and then were characterized by Flow cytometry. SADSCS expressed CD90, CD44, and CD105 but did not express CD45 surface marker. Growth factors were used for chondrogenesis induction. Histology and immunohistology methods and gene expression by real-time PCR 14 days after induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the expression of gene markers of chondrogenesis for example collagen type II aggrecan and SOX9 has shown by real-time PCR assay. Then, SADSCs were seeded alone on polycaprolatone (PCL) and with Freeze thaw Freeze (PCL+FTF) scaffolds and SADSCs differentiated toward the chondrogenic lineage and chondrogenesis induction were evaluated using scanning electron microcopy (SEM) and MTT assay. Our results showed that SADSCs were also similar to the other adipose-derived stem cells. Using TGF-beta3 and BMP-6 were effective for chondrogenesis induction. Therefore using of TGF-beta3 and BMP-6 growth factors may be the important key for in vitro chondrogenesis induction. The bio-composite of PCL+FTF nanofibrous scaffolds enhance the chondroblast differentiation and proliferation compared to PCL scaffolds .Therefore, our model will make it possible to study the mechanism of transition from chondroblast to chondrocyte.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Couro Cabeludo/citologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Proteína Morfogenética Óssea 6/genética , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Matriz Extracelular/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Poliésteres/farmacologia , Couro Cabeludo/crescimento & desenvolvimento , Alicerces Teciduais , Fator de Crescimento Transformador beta3/genética
2.
Braz J Microbiol ; 42(1): 330-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031639

RESUMO

Streptococcus mutans (S. mutans), harboring biofilm formation, considered as a main aetiological factor of dental caries. Gtf genes play an important role in S. mutans biofilm formation. The purpose of this study was to investigate the effect of Lactobacillus acidophilus-derived biosurfactant on S. mutans biofilm formation and gtfB/C expression level (S. mutans standard strain ATCC35668 and isolated S. mutans strain (22) from dental plaque). The Lactobacillus acidophilus (L. acidophilus) DSM 20079 was selected as a probiotic strain to produce biosurfactant. The FTIR analysis of its biosurfactant showed that it appears to have a protein-like component. Due to the release of such biosurfactants, L. acidophilus was able to interfere in the adhesion and biofilm formation of the S. mutans to glass slide. It also could make streptococcal chains shorter. Using realtime RT-PCR quantitation method made it clear that gtfB and gtfC gene expression were decreased in the presence of L. acidophilus-derived biosurfactant fraction. Several properties of S. mutans cells (the surface properties, biofilm formation, adhesion ability and gene expression) were changed after L. acidophilus- derived biosurfactant treatment. It is also concluded that biosurfacant treatment can provide an optional way to control biofilm development. On the basis of our findings, we can suggest that the prepared biosurfactant may interfere with adhesion processes of S. mutans to teeth surfaces, provided additional evaluation produce satisfactory results.

3.
Adv Biomed Res ; 3: 169, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25221772

RESUMO

BACKGROUND: Streptococci are the main causative agents in plaque formation and mutans streptococci are the principle etiological agent of dental plaque and caries. The process of biofilm formation is a step-wise process, starting with adhesion of planktonic cells to the surfaces. It is now a well known fact that expression of glucosyltransferases (gtfs) and fructosyltransferase (ftf) genes play a critical role in the initial adhesion of Streptococcus mutans to the tooth surface, which results in the formation of dental plaques and consequently caries and other periodontal diseases. MATERIALS AND METHODS: In the present study, we have determined the effect of biosurfactants purified from Lactobacillus reuteri (DSM20016) culture on gene expression profile of gftB/C and fft of S. mutans (ATCC35668) using quantitative real-time polymerase chain reaction. RESULTS: The application of biosurfactant caused considerable down-regulation of the expression of all three genes under study. The reduction in gene expression was statistically very significant (P > 0.0001 for all three genes). CONCLUSIONS: Inhibition of these genes by the extracted L. reuteri biosurfactant shows the emergence of a powerful alternative to the presently practicing alternatives. In view of the importance of these gene products for S. mutans attachment to the tooth surface, which is the initial important step in biofilm production and dental caries, we believe that the biosurfactant prepared in this study could be considered as a step ahead in dental caries prevention.

4.
Adv Biomed Res ; 3: 231, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538917

RESUMO

BACKGROUND: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC) and fructosyltransferase (ftf) genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. MATERIALS AND METHODS: The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392) on gene expression profile of gftB/C and tft of S. mutans (ATCC35668) using quantitative real-time PCR. RESULTS: The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057). CONCLUSION: Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention.

5.
Artigo em Inglês | MEDLINE | ID: mdl-22336643

RESUMO

BACKGROUND: In recent years, bioceramics have been favored by biomaterials scientists and researchers. Due to their special and distinctive features, bioactive glass and hydroxyapatite possess a higher place among different types of bioceramics. METHOD: In this study, the effect of 63S bioactive glass and bone-derived hydroxyapatite particles on the proliferation of human bone-marrow stem cells (hMSCs) was investigated. Bioactive glass particles were made via sol-gel method and hydroxyapatite was obtained from bovine bone. The particle size and morphology were investigated by scanning electron microscope (SEM). Then the in vitro cytotoxicity of particles was evaluated using MTT assay. SEM showed that bioactive glass particles were in the nanoscale range and had tendency towards agglomeration. It was also confirmed that the hydroxyapatite particles were agglomerations of crystals cca 50-500 nm across. RESULTS: The results of MTT assay confirmed the viability and proliferation of hMSCs in contact with bioactive glass and bone-derived HA particles. The fabricated particles in combination with stem cells were shown to hold promising potential for further applications in tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis , Células da Medula Óssea/fisiologia , Osso e Ossos/química , Vidro , Hidroxiapatitas/toxicidade , Células-Tronco/fisiologia , Testes de Toxicidade , Animais , Bovinos , Proliferação de Células , Humanos , Hidroxiapatitas/isolamento & purificação , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Tamanho da Partícula
6.
Braz. j. microbiol ; 42(1): 330-339, Jan.-Mar. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-571407

RESUMO

Streptococcus mutans (S. mutans), harboring biofilm formation, considered as a main aetiological factor of dental caries. Gtf genes play an important role in S. mutans biofilm formation. The purpose of this study was to investigate the effect of Lactobacillus acidophilus-derived biosurfactant on S. mutans biofilm formation and gtfB/C expression level (S. mutans standard strain ATCC35668 and isolated S. mutans strain (22) from dental plaque). The Lactobacillus acidophilus (L. acidophilus) DSM 20079 was selected as a probiotic strain to produce biosurfactant. The FTIR analysis of its biosurfactant showed that it appears to have a protein-like component. Due to the release of such biosurfactants, L. acidophilus was able to interfere in the adhesion and biofilm formation of the S. mutans to glass slide. It also could make streptococcal chains shorter. Using realtime RT-PCR quantitation method made it clear that gtfB and gtfC gene expression were decreased in the presence of L. acidophilus-derived biosurfactant fraction. Several properties of S. mutans cells (the surface properties, biofilm formation, adhesion ability and gene expression) were changed after L. acidophilus-derived biosurfactant treatment. It is also concluded that biosurfacant treatment can provide an optional way to control biofilm development. On the basis of our findings, we can suggest that the prepared biosurfactant may interfere with adhesion processes of S. mutans to teeth surfaces, provided additional evaluation produce satisfactory results.


Assuntos
Humanos , Biofilmes , Cárie Dentária , Expressão Gênica , Técnicas de Transferência de Genes , Técnicas In Vitro , Lactobacillus acidophilus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Streptococcus mutans/isolamento & purificação , Técnicas e Procedimentos Diagnósticos , Métodos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA