Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(16): 4099-4109, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28439620

RESUMO

When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 µm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 µm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.


Assuntos
Filtração/métodos , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Membranas Artificiais , Plásticos/análise , Análise Espectral Raman/métodos , Alumínio/química , Celulose/análogos & derivados , Filtração/instrumentação , Análise de Alimentos/instrumentação , Ouro/química , Tamanho da Partícula , Plásticos/isolamento & purificação , Cimento de Policarboxilato/química , Prata/química , Análise Espectral Raman/instrumentação
2.
Chemosphere ; 313: 137300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414038

RESUMO

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
3.
Appl Spectrosc ; 74(9): 1155-1160, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32186214

RESUMO

Microplastics (MPs) have been reported in various environmental compartments and their number is continuously increasing because of degradation into smaller fragments down to nanoplastics. Humans are exposed to these small-sized MPs through food and air with potential health consequences that still need to be determined. This requires, in the first place, efficient and detailed visualization, relocalization, and characterization of the same MPs with complementary analytical methods. Here, we show the first application of a correlative microscopy and spectroscopy workflow to MPs that meets these demands. For this purpose, standard MP particles on aluminum-coated polycarbonate membrane filters were investigated by an optical zoom microscope and a hyphenated scanning electron microscopy (SEM)-Raman system. By merging the obtained data in one software, it is possible to navigate on the entire filters' surface and correlate at identical locations MP morphology at the spatial resolutions of electron (1.6 nm at 1 kV for the used SEM, ∼100 nm minimum MP size in this study) and optical (∼1-10 µm) microscopies with chemical identification by micro-Raman spectroscopy. Moreover, we observed that low-voltage SEM works without a conductive coating of MPs, causes no detectable charging and structural changes, and provides high-resolution surface imaging of single and clustered MP particles, thus enabling subsequent Raman measurements. We believe that further work on the accurate identification and quantification of micro- and nanoplastics in real samples can potentially profit from this workflow.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Microplásticos/análise , Microscopia/métodos , Análise Espectral Raman/métodos
4.
Water Res ; 141: 307-316, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803096

RESUMO

Up to now, only a few studies about microparticle contamination of bottled mineral water have been published. The smallest analysed particle size was 5 µm. However, due to toxicological reasons, especially microparticles smaller than 1.5 µm are critically discussed. Therefore, in the present study, 32 samples of bottled mineral water were investigated for contamination by microplastics, pigment and additive particles. Due to the application of aluminium coated polycarbonate membrane filters and micro-Raman spectroscopy, a lowest analysed particle size of 1 µm was achieved. Microplastics were found in water from all bottle types: in single use and reusable bottles made of poly(ethylene terephthalate) (PET) as well as in glass bottles. The amount of microplastics in mineral water varied from 2649 ±â€¯2857 per litre in single use PET bottles up to 6292 ±â€¯10521 per litre in glass bottles. While in plastic bottles, the predominant polymer type was PET; in glass bottles various polymers such as polyethylene or styrene-butadiene-copolymer were found. Hence, besides the packaging itself, other contamination sources have to be considered. Pigment particles were detected in high amounts in reusable, paper labelled bottles (195047 ±â€¯330810 pigment particles per litre in glass and 23594 ±â€¯25518 pigment particles per litre in reusable paper labelled PET bottles). Pigment types found in water samples were the same as used for label printing, indicating the bottle cleaning process as possible contamination route. Furthermore, on average 708 ±â€¯1024 particles per litre of the additive Tris(2,4-di-tert-butylphenyl)phosphite were found in reusable PET bottles. This additive might be leached out from the bottle material itself. Over 90% of the detected microplastics and pigment particles were smaller than 5 µm and thus not covered by previous studies. In summary, this is the first study reporting about microplastics, pigment and additive particles found in bottled mineral water samples with a smallest analysed particle size of 1 µm.


Assuntos
Corantes/análise , Água Potável/análise , Águas Minerais/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Vidro , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA