Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 146(21): 14391-14396, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748513

RESUMO

Model membranes interfaced with bioelectronics allow for the exploration of fundamental cell processes and the design of biomimetic sensors. Organic conducting polymers are an attractive surface on which to study the electrical properties of membranes because of their low impedance, high biocompatibility, and hygroscopic nature. However, establishing supported lipid bilayers (SLBs) on conducting polymers has lagged significantly behind other substrate materials, namely, for challenges in membrane electrical sealing and stability. Unlike SLBs that are highly dependent on surface interactions, droplet interface bilayers (DIBs) and droplet hydrogel bilayers (DHBs) leverage the energetically favorable organization of phospholipids at atomically smooth liquid interfaces to build high-integrity membranes. For the first time, we report the formation of droplet polymer bilayers (DPBs) between a lipid-coated aqueous droplet and the high-performing conducting polymer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). The resulting bilayers can be produced from a range of lipid compositions and demonstrate strong electrical sealing that outcompetes SLBs. DPBs are subsequently translated to patterned and planar microelectrode arrays to ease barriers to implementation and improve the reliability of membrane formation. This platform enables more reproducible and robust membranes on conducting polymers to further the mission of merging bioelectronics and synthetic, natural, or hybrid bilayer membranes.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Polímeros/química , Poliestirenos/química , Propriedades de Superfície
2.
J Am Chem Soc ; 142(1): 290-299, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31801348

RESUMO

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.


Assuntos
Lipídeos/química , Polímeros/química , Fenômenos Biofísicos , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Concentração Osmolar , Eletricidade Estática , Tensão Superficial
3.
J Membr Biol ; 249(4): 523-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27072138

RESUMO

We investigate the phase transition stages for detergent-mediated liposome solubilization of bio-mimetic membranes with the motivation of integrating membrane-bound Photosystem I into bio-hybrid opto-electronic devices. To this end, the interaction of two non-ionic detergents n-dodecyl-ß-D-maltoside (DDM) and Triton X-100 (TX-100) with two types of phospholipids, namely DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), are examined. Specifically, solubilization processes for large unilamellar liposomes are studied with the aid of turbidity measurements, dynamic light scattering, and cryo-transmission electron microscopy imaging. Our results indicate that the solubilization process is well depicted by a three-stage model, wherein the lamellar-to-micellar transitions for DPhPC liposomes are dictated by the critical detergent/phospholipid ratios. The solubilization of DPhPC by DDM is devoid of formation of a "gel-like" phase. Furthermore, our results indicate that DDM is a stable candidate for DPhPC solubilization and proteoliposome formation. Finally, although the solubilization of DPPG with DDM indicated the familiar three-stage process, the same process with TX-100 indicate structural deformation of vesicles into complex network of kinetically trapped micro- and nanostructured arrangements of lipid bilayers.


Assuntos
Detergentes/química , Lipídeos/química , Lipossomos/química , Transição de Fase , Lipossomos/ultraestrutura , Micelas , Estrutura Molecular , Fosfatidilgliceróis/química , Solubilidade/efeitos dos fármacos , Tensoativos/farmacologia
4.
Soft Matter ; 12(23): 5096-109, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27174295

RESUMO

Biomimetic membranes assembled from block copolymers attract considerable interest because they exhibit greater stability and longetivity compared to lipid bilayers, and some enable the reconstitution of functional transmembrane biomolecules. Yet to-date, block copolymer membranes have not been achieved using the droplet interface bilayer (DIB) method, which uniquely allows assembling single- and multi-membrane networks between water droplets in oil. Herein, we investigate the formation of poly(ethylene oxide)-b-poly(dimethyl siloxane)-b-poly(ethylene oxide) triblock copolymer-stabilized interfaces (CSIs) between polymer-coated aqueous droplets in solutions comprising combinations of decane, hexadecane and AR20 silicone oil. We demonstrate that triblock-coated droplets do not spontaneously adhere in these oils because all are thermodynamically good solvents for the hydrophobic PDMS middle block. However, thinned planar membranes are reversibly formed at the interface between droplets upon the application of a sufficient transmembrane voltage, which removes excess solvent from between droplets through electrocompression. At applied voltages above the threshold required to initiate membrane thinning, electrowetting causes the area of the CSI between droplets to increase while thickness remains constant; the CSI electrowetting response is similar to that encountered with lipid-based DIBs. In combination, these results reveal that stable membranes can be assembled in a manner that is completely reversible when an external pressure is used to overcome a barrier to adhesion caused by solvent-chain interactions, and they demonstrate new capability for connecting and disconnecting aqueous droplets via polymer-stabilized membranes.


Assuntos
Materiais Biomiméticos , Membranas Artificiais , Solventes , Bicamadas Lipídicas , Óleos , Água
5.
Langmuir ; 31(14): 4224-31, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790280

RESUMO

Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments.


Assuntos
Ar , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Capacitância Elétrica , Impedância Elétrica , Membranas Artificiais , Nanoestruturas/química , Óleos/química , Pressão Osmótica , Propriedades de Superfície , Temperatura de Transição , Volatilização
6.
J Am Chem Soc ; 135(15): 5545-8, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23550820

RESUMO

Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers (µDIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemispherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a critical bending moment, the buckling bilayer fissions a vesicle to regulate its shape and mass. The µDIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.


Assuntos
Bicamadas Lipídicas/química , Fenômenos Mecânicos , Membranas Artificiais , Técnicas Analíticas Microfluídicas , Volatilização
7.
Colloids Surf B Biointerfaces ; 206: 111927, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216851

RESUMO

Cells tune the lipid types present in their membranes to adjust for thermal and chemical stability, as well as to promote association and dissociation of small molecules and bound proteins. Understanding the influence of lipid type on molecule association would open doors for targeted cell therapies, in particular when molecular association is observed in the presence of competing membranes. For this reason, we modeled and experimentally observed the association of a small molecule with two membrane types present by measuring the association of the detergent Triton X-100 with two types of liposomes, egg phosphatidylcholine (ePC) liposomes and egg phosphatidic acid (ePA) liposomes, at varying ratios. We called this mixed liposomes, as each liposome population was formed from a different lipid type. Absorbance spectrometry was used to observe the stages of detergent association with mixed liposomes and to determine the detergent concentration at which the liposomes were fully saturated. A saturation model was also derived that predicts the detergent associated with each liposome type when the lipid bilayers are fully saturated with detergent. The techinical input parameters for the model are the detergent to lipid ratio and the relative absorbance intensity for each of the pure liposome species at saturation. With that, the association of detergent with any mixture of those liposome types at saturation can be determined.


Assuntos
Detergentes , Lipossomos , Bicamadas Lipídicas , Octoxinol , Fosfatidilcolinas
8.
Lab Chip ; 10(6): 710-7, 2010 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-20221558

RESUMO

Physically-encapsulated droplet interface bilayers are formed by confining aqueous droplets encased in lipid monolayers within connected compartments of a solid substrate. Each droplet resides within an individual compartment and is positioned on a fixed electrode built into the solid substrate. Full encapsulation of the network is achieved with a solid cap that inserts into the substrate to form a closed volume. Encapsulated networks provide increased portability over unencapsulated networks by limiting droplet movement and through the integration of fixed electrodes into the supporting fixture. The formation of encapsulated droplet interface bilayers constructed from diphytanoyl phosphocoline (DPhPC) phospholipids is confirmed with electrical impedance spectroscopy, and cyclic voltammetry is used to measure the effect of alamethicin channels incorporated into the resulting lipid bilayers. The durability of the networks is quantified using a mechanical shaker to oscillate the bilayer in a direction transverse to the plane of the membrane and the results show that single droplet interface bilayers can withstand 1-10g of acceleration prior to bilayer failure. Observed failure modes include both droplet separation and bilayer rupturing, where the geometry of the supporting substrate and the presence of integrated electrodes are key contributors. Physically-encapsulated DIBs can be shaken, moved, and inverted without bilayer failure, enabling the creation of a new class of lab-on-chip devices.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/química , Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza , Soluções
9.
Colloids Surf B Biointerfaces ; 187: 110609, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31806354

RESUMO

The effects of lipid charge and head group size on liposome partitioning by detergents is an important consideration for applications such as liposomal drug delivery or proteoliposome formation. Yet, the solubilization of mixed-lipid liposomes, those containing multiple types of lipids, by detergents has received insufficient attention. This study examines the incorporation into and subsequent dissolution of mixed-lipid liposomes comprised of both egg phosphatidylcholine (ePC) and egg phosphatidic acid (ePA) by the detergent Triton-X100 (TX). Liposomes were prepared with mixtures of the two lipids, ePC and ePA, at molar ratios from 0 to 1, then step-wise solubilized with TX. Changes in turbidity, size distribution, and molar heat power at constant temperature throughout the solubilization process were assessed. The data suggest that the difference in lipid shapes (shape factors = 0.74 and 1.4 [1,2]) affects packing in membranes, and hence influences how much TX can be incorporated before disruption. As such, liposomes containing the observed ratios of ePA incorporated higher concentrations of TX before initiating dissolution into detergent and lipid mixed-micelles. The cause was concluded to be increased mismatching in the bilayer from the conical shape of ePA compared to the cylindrical shape of ePC. Additionally, the degree to which ePA is approximated as conical versus cylindrical was modulated with pH. It was confirmed that less conical ePA behaved more similarly to ePC than more conical ePA. The understanding gained here on lipid shape in liposome incorporation of TX enables research to use in vitro liposomes that more closely mimic native membranes.


Assuntos
Detergentes/química , Lipídeos/química , Lipossomos/química , Calorimetria , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Octoxinol/química , Óvulo/química , Tamanho da Partícula , Ácidos Fosfatídicos/química , Fosfatidilcolinas/química , Solubilidade , Eletricidade Estática
10.
Nat Nanotechnol ; 15(1): 73-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844288

RESUMO

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.


Assuntos
Nanoestruturas/química , Peptídeos/química , Água/química , Aquaporinas/química , Calixarenos/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Permeabilidade , Fenóis/química
11.
Nanoscale ; 11(40): 18640-18652, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31584592

RESUMO

It is now known that mammalian brains leverage plasticity of both chemical and electrical synapses (ES) for collocating memory and processing. Unlike chemical synapses, ES join neurons via gap junction ion channels that permit fast, threshold-independent, and bidirectional ion transport. Like chemical synapses, ES exhibit activity-dependent plasticity, which modulates the ionic conductance between neurons and, thereby, enables adaptive synchronization of action potentials. Many types of adaptive computing devices that display discrete, threshold-dependent changes in conductance have been developed, yet far less effort has been devoted to emulating the continuously variable conductance and activity-dependent plasticity of ES. Here, we describe an artificial electrical synapse (AES) that exhibits voltage-dependent, analog changes in ionic conductance at biologically relevant voltages. AES plasticity is achieved at the nanoscale by linking dynamical geometrical changes of a host lipid bilayer to ion transport via gramicidin transmembrane ion channels. As a result, the AES uniquely mimics the composition, biophysical properties, bidirectional and threshold-independent ion transport, and plasticity of ES. Through experiments and modeling, we classify our AES as a volatile memristor, where the voltage-controlled conductance is governed by reversible changes in membrane geometry and gramicidin channel density. Simulations show that AES plasticity can adaptively synchronize Hodgkin-Huxley neurons. Finally, by modulating the molecular constituents of the AES, we show that the amplitude, direction, and speed of conductance changes can be tuned. This work motivates the development and integration of ES-inspired computing devices for achieving more capable neuromorphic hardware.


Assuntos
Gramicidina/química , Membranas Artificiais , Sinapses/química , Animais , Humanos
12.
J R Soc Interface ; 16(161): 20190652, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31822221

RESUMO

A new method for quantifying lipid-lipid interactions within biomimetic membranes undergoing electrocompression is demonstrated by coupling droplet mechanics and membrane biophysics. The membrane properties are varied by altering the lipid packing through the introduction of cholesterol. Pendant drop tensiometry is used to measure the lipid monolayer tension at an oil-water interface. Next, two lipid-coated aqueous droplets are manipulated into contact to form a bilayer membrane at their adhered interface. The droplet geometries are captured from two angles to provide accurate measurements of both the membrane area and the contact angle between the adhered droplets. Combining the monolayer tension and contact angle measurements enables estimations of the membrane tension with respect to lipid composition. Then, the membrane is electromechanically compressed using a transmembrane voltage. Electrostatic pressure, membrane tension and the work necessary for bilayer thinning are tracked, and a model is proposed to capture the mechanics of membrane compression. The results highlight that a previously unaccounted for energetic term is produced during compression, potentially reflecting changes in the lateral membrane structure. This residual energy is eliminated in cases with cholesterol mole fractions of 0.2 and higher, suggesting that cholesterol diminishes these adjustments.


Assuntos
Materiais Biomiméticos , Lipídeos de Membrana/química , Membranas Artificiais , Modelos Biológicos , Colesterol/química
13.
J Vis Exp ; (145)2019 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-30907866

RESUMO

The ability to recreate synaptic functionalities in synthetic circuit elements is essential for neuromorphic computing systems that seek to emulate the cognitive powers of the brain with comparable efficiency and density. To date, silicon-based three-terminal transistors and two-terminal memristors have been widely used in neuromorphic circuits, in large part due to their ability to co-locate information processing and memory. Yet these devices cannot achieve the interconnectivity and complexity of the brain because they are power-hungry, fail to mimic key synaptic functionalities, and suffer from high noise and high switching voltages. To overcome these limitations, we have developed and characterized a biomolecular memristor that mimics the composition, structure, and switching characteristics of biological synapses. Here, we describe the process of assembling and characterizing biomolecular memristors consisting of a 5 nm-thick lipid bilayer formed between lipid-functionalized water droplets in oil and doped with voltage-activated alamethicin peptides. While similar assembly protocols have been used to investigate biophysical properties of droplet-supported lipid membranes and membrane-bound ion channels, this article focuses on key modifications of the droplet interface bilayer method essential for achieving consistent memristor performance. Specifically, we describe the liposome preparation process and the incorporation of alamethicin peptides in lipid bilayer membranes, and the appropriate concentrations of each constituent as well as their impact on the overall response of the memristors. We also detail the characterization process of biomolecular memristors, including measurement and analysis of memristive current-voltage relationships obtained via cyclic voltammetry, as well as short-term plasticity and learning in response to step-wise voltage pulse trains.


Assuntos
Bicamadas Lipídicas , Sinapses/fisiologia , Alameticina , Biomimética , Canais Iônicos , Lipossomos
14.
Lab Chip ; 16(18): 3576-88, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27513561

RESUMO

The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizes the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. This novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.


Assuntos
Eletricidade , Hidrodinâmica , Bicamadas Lipídicas , Membranas Artificiais , Capacitância Elétrica , Condutividade Elétrica , Fatores de Tempo
15.
ACS Appl Mater Interfaces ; 2(12): 3654-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21067200

RESUMO

Solidified biomolecular networks that incorporate liquid-supported lipid bilayers are constructed by attaching lipid-encased, water-swollen hydrogels contained in oil. Poly(ethylene glycol) dimethacrylate (PEG-DMA) and a free-radical photoinitiator are added to an aqueous lipid vesicle solution such that exposure to ultraviolet light results in solidification of neighboring aqueous volumes. Bilayer formation can occur both prior to photopolymerization with the aqueous mixture in the liquid state and after solidification by using the regulated attachment method (RAM) to attach the aqueous volumes contained within a flexible substrate. In addition, photopolymerization of the hydrogels can be performed in a separate mold prior to placement in the supporting substrate. Membranes formed across a wide range of hydrogel concentrations [0-80% (w/v); MW=1000 g/mol PEG-DMA] exhibit high electrical resistances (1-10 GΩ), which enable single-channel recordings of alamethicin channels and show significant durability and longevity. We demonstrate that just as liquid phases can be detached and reattached using RAM, reconfiguration of solid aqueous phases is also possible. The results presented herein demonstrate a step toward constructing nearly solid-state biomolecular materials that retain fluid interfaces for driving molecular assembly. This work also introduces the use of three-dimensional printing to rapidly prototype a molding template used to fabricate polyurethane substrates and to shape individual hydrogels.


Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Bicamadas Lipídicas/química , Metacrilatos/química , Polietilenoglicóis/química , Teste de Materiais , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA