Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Oral Health ; 23(1): 111, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36803460

RESUMO

BACKGROUND: Droplets and aerosols produced during dental procedures are a risk factor for microbial and viral transmission. Unlike sodium hypochlorite, hypochlorous acid (HOCl) is nontoxic to tissues but still exhibits broad microbicidal effect. HOCl solution may be applicable as a supplement to water and/or mouthwash. This study aims to evaluate the effectiveness of HOCl solution on common human oral pathogens and a SARS-CoV-2 surrogate MHV A59 virus, considering the dental practice environment. METHODS: HOCl was generated by electrolysis of 3% hydrochloric acid. The effect of HOCl on human oral pathogens, Fusobacterium nucleatum, Prevotella intermedia, Streptococcus intermedius, Parvimonas micra, and MHV A59 virus was studied from four perspectives: concentration; volume; presence of saliva; and storage. HOCl solution in different conditions was utilized in bactericidal and virucidal assays, and the minimum inhibitory volume ratio that is required to completely inhibit the pathogens was determined. RESULTS: In the absence of saliva, the minimum inhibitory volume ratio of freshly prepared HOCl solution (45-60 ppm) was 4:1 for bacterial suspensions and 6:1 for viral suspensions. The presence of saliva increased the minimum inhibitory volume ratio to 8:1 and 7:1 for bacteria and viruses, respectively. Applying a higher concentration of HOCl solution (220 or 330 ppm) did not lead to a significant decrease in the minimum inhibitory volume ratio against S. intermedius and P. micra. The minimum inhibitory volume ratio increases in applications of HOCl solution via the dental unit water line. One week of storage of HOCl solution degraded HOCl and increased the minimum growth inhibition volume ratio. CONCLUSIONS: HOCl solution (45-60 ppm) is still effective against oral pathogens and SAR-CoV-2 surrogate viruses even in the presence of saliva and after passing through the dental unit water line. This study indicates that the HOCl solution can be used as therapeutic water or mouthwash and may ultimately reduce the risk of airborne infection in dental practice.


Assuntos
COVID-19 , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacologia , SARS-CoV-2 , Antissépticos Bucais/farmacologia , Aerossóis e Gotículas Respiratórios , Bactérias
2.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055155

RESUMO

This study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey's test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Doenças da Polpa Dentária/microbiologia , Gelatina/química , Metacrilatos/química , Metronidazol/farmacologia , Células-Tronco/citologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Células Cultivadas , Clindamicina/química , Doenças da Polpa Dentária/tratamento farmacológico , Humanos , Hidrogéis , Injeções , Metronidazol/química , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Células-Tronco/efeitos dos fármacos
3.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430238

RESUMO

This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundii were also studied. In vitro compatibility with human-derived dental pulp stem cells and inflammatory response in vivo using a subcutaneous rat model were also determined. A bead-free fibrous microstructure with interconnected pores was observed for all groups. GelMA and GelMA+10%AZ had the highest fiber diameter means. The tensile strength of the GelMA-based fibers was reduced upon AZ addition. A similar pattern was observed for the degradation profile in vitro. GelMA+15%AZ fibers led to the highest bacterial inhibition. The presence of AZ, regardless of the concentration, did not pose significant toxicity. In vivo findings indicated higher blood vessel formation, mild inflammation, and mature and thick well-oriented collagen fibers interweaving with the engineered fibers. Altogether, AZ-laden photocrosslinkable GelMA fibers had adequate mechanical and degradation properties, with 15%AZ displaying significant antimicrobial activity without compromising biocompatibility.


Assuntos
Azitromicina , Hidrogéis , Ratos , Humanos , Animais , Azitromicina/farmacologia , Hidrogéis/química , Gelatina/química , Controle de Infecções
4.
J Immunol ; 202(7): 2035-2043, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737274

RESUMO

Locally produced osteoclastogenic factor RANKL plays a critical role in the development of bone resorption in periradicular periodontitis. However, because RANKL is also required for healthy bone remodeling, it is plausible that a costimulatory molecule that upregulates RANKL production in inflammatory periradicular periodontitis may be involved in the pathogenic bone loss processes. We hypothesized that macrophage migration inhibitory factor (MIF) would play a role in upregulating the RANKL-mediated osteoclastogenesis in the periradicular lesion. In response to pulp exposure, the bone loss and level of MIF mRNA increased in the periradicular periodontitis, which peaked at 14 d, in conjunction with the upregulated expressions of mRNAs for RANKL, proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), chemokines (MCP-1 and SDF-1), and MIF's cognate receptors CXCR4 and CD74. Furthermore, expressions of those mRNAs were found significantly higher in wild-type mice compared with that of MIF-/- mice. In contrast, bacterial LPS elicited the production of MIF from ligament fibroblasts in vitro, which, in turn, enhanced their productions of RANKL and TNF-α. rMIF significantly upregulated the number of TRAP+ osteoclasts in vitro. Finally, periapical bone loss induced in wild-type mice were significantly diminished in MIF-/- mice. Altogether, the current study demonstrated that MIF appeared to function as a key costimulatory molecule to upregulate RANKL-mediated osteoclastogenesis, leading to the pathogenically augmented bone resorption in periradicular lesions. These data also suggest that the approach to neutralize MIF activity may lead to the development of a therapeutic regimen for the prevention of pathogenic bone loss in periradicular periodontitis.


Assuntos
Reabsorção Óssea/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Periodontite Periapical/metabolismo , Animais , Reabsorção Óssea/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Fatores Inibidores da Migração de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodontite Periapical/imunologia , Ligante RANK/imunologia , Ligante RANK/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 452-462, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28153611

RESUMO

Among several virulence factors produced by the periodontal pathogen Porphyromonas gingivalis (Pg), a recently identified novel class of dihydroceramide lipids that contains a long acyl-chain has the potential to play a pathogenic role in periodontitis because of its higher level of tissue penetration compared to other lipid classes produced by Pg. However, the possible impact of Pg ceramides on osteoclastogenesis is largely unknown. In the present study, we report that the phosphoglycerol dihydroceramide (PGDHC) isolated from Pg enhanced osteoclastogenesis in vitro and in vivo. Using RAW264.7 cells, in vitro assays indicated that PGDHC can promote RANKL-induced osteoclastogenesis by generating remarkably larger TRAP+ multinuclear osteoclasts compared to Pg LPS in a TLR2/4-independent manner. According to fluorescent confocal microscopy, co-localization of non-muscle myosin II-A (Myh9) and PGDHC was observed in the cytoplasm of osteoclasts, indicating the membrane-permeability of PGDHC. Loss- and gain-of-function assays using RNAi-based Myh9 gene silencing, as well as overexpression of the Myh9 gene, in RAW264.7 cells showed that interaction of PGDHC with Myh9 enhances RANKL-induced osteoclastogenesis. It was also demonstrated that PGDHC can upregulate the expression of dendritic cell-specific transmembrane protein (DC-STAMP), an important osteoclast fusogen, through signaling that involves Rac1, suggesting that interaction of PGDHC with Myh9 can elicit the cell signal that promotes osteoclast cell fusion. Taken together, our data indicated that PGDHC is a Pg-derived, cell-permeable ceramide that possesses a unique property of promoting osteoclastogenesis via interaction with Myh9 which, in turn, activates a Rac1/DC-STAMP pathway for upregulation of osteoclast cell fusion.


Assuntos
Ceramidas/metabolismo , Miosina não Muscular Tipo IIA/genética , Periodontite/genética , Porphyromonas gingivalis/metabolismo , Animais , Comunicação Celular/genética , Diferenciação Celular/genética , Ceramidas/química , Ceramidas/genética , Inativação Gênica , Glicerofosfolipídeos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Cadeias Pesadas de Miosina , Proteínas do Tecido Nervoso/genética , Miosina não Muscular Tipo IIA/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/patogenicidade , Ligante RANK/metabolismo , Células RAW 264.7 , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/genética
6.
Biochem Biophys Res Commun ; 480(1): 42-47, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27720716

RESUMO

Prior consensus held that medication-related osteonecrosis of the jaw (MRONJ) lesion was composed of necrotic bone; however, more recent studies have identified inflammatory infiltrates in the lesion. Herein, we report that remarkably elevated infiltrating γδT cells (90% of lymphocytes) express Semaphorin 4D (Sema4D) in human patient with MRONJ lesion, whereas γδT cells only account for 2-5% of lymphocytes in blood. Importantly, Sema4D is implicated in the pathogenesis of T cell-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Indeed, in a mouse model of MRONJ, an elevated number of γδT, but not αßT, cells infiltrating in the MRONJ-like lesion was observed. Both elevated soluble Sema4D (sSema4D) production accompanied by pro-inflammatory cytokines, including TNF-α IFN-γ and IL-1ß, and Sema4D-expressing γδT cells were detected in mouse MRONJ-like lesion. Activated γδT cells produced sSema4D in vitro, which could promote TNF-α production from macrophages. Meanwhile, γδT cell-KO mice were resistant to the induction of MRONJ and, hence, showed no elevation of local productions of Sema4D and TNF-α. Finally, systemic administration of anti-Sema4D neutralizing mAb suppressed the onset of MRONJ in wild-type mice in conjunction with diminished level of TNF-α. These results suggested a critical pathogenic engagement of Sema4D produced by γδT cells in the development of MRONJ.


Assuntos
Antígenos CD/metabolismo , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Semaforinas/metabolismo , Linfócitos T/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/metabolismo , Difosfonatos/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Pamidronato , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Semaforinas/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Ácido Zoledrônico
7.
J Immunol ; 191(4): 1785-91, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863904

RESUMO

IL-17 is a pleiotropic cytokine produced by Th17 T cells that induces a myriad of proinflammatory mediators. However, different models of inflammation report opposite functional roles of IL-17 signal in terms of its effects on bone destruction. In this study we determined the role of IL-17RA signal in bone resorption stimulated by dentoalveolar infections. Infrabony resorptive lesions were induced by surgical pulp exposure and microbial infection of mouse molar teeth. IL-17 was strongly induced in periapical tissues in wild-type (WT) mice by 7 d after the infection but was not expressed in uninfected mice. Dentoalveolar infections of IL-17RA knockout (KO) mice demonstrated significantly increased bone destruction and more abscess formation in the apical area compared with WT mice. Infected IL-17RA KO mice exhibited significantly increased neutrophils and macrophages compared with the WT littermates at day 21, suggesting a failure of transition from acute to chronic inflammation in the IL-17RA KO mice. The expression of IL-1 (both α and ß isoforms) and MIP2 were significantly upregulated in the IL-17RA KO compared with WT mice at day 21 postinfection. The development of periapical lesions in IL-17RA KO mice was significantly attenuated by neutralization of IL-1ß and MIP2. Taken together, these results demonstrate that IL-17RA signal seems to be protective against infection-induced periapical inflammation and bone destruction via suppression of neutrophil and mononuclear inflammation.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Reabsorção Óssea/prevenção & controle , Interleucina-17/fisiologia , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Periodontite Periapical/patologia , Receptores de Interleucina-17/fisiologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/imunologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/imunologia , Quimiocina CXCL2/biossíntese , Quimiocina CXCL2/genética , Doença Crônica , Coinfecção , Citocinas/biossíntese , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucina-1alfa/biossíntese , Interleucina-1alfa/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Mandíbula , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dente Molar , Receptores de Interleucina-17/deficiência
8.
Int J Oral Sci ; 16(1): 50, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956025

RESUMO

Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (i.e., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide-eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (P < 0.001), and inhibits IL-1α (P = 0.027), TNF-α (P = 0.004), and IL-6 (P < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as Il1b, Il1a, Il6, Ptgs2, and Tnf. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm3 and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm3 (P = 0.012 3) and (2 443 ± 931) cells (P = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.


Assuntos
Lipoproteínas HDL , NF-kappa B , Periodontite Periapical , Animais , Periodontite Periapical/terapia , Camundongos , Lipopolissacarídeos , Osteogênese/efeitos dos fármacos , Humanos , Osteoclastos/efeitos dos fármacos , Nanopartículas
9.
Infect Immun ; 81(4): 1021-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23166162

RESUMO

Dental caries is one of the most prevalent infectious diseases in the United States, affecting approximately 80% of children and the majority of adults. Dental caries may lead to endodontic disease, where the bacterial infection progresses to the root canal system of the tooth, leading to periapical inflammation, bone erosion, severe pain, and tooth loss. Periapical inflammation may also exacerbate inflammation in other parts of the body. Although conventional clinical therapies for this disease are successful in approximately 80% of cases, there is still an urgent need for increased efficacy of treatment. In this study, we applied a novel gene-therapeutic approach using recombinant adeno-associated virus (AAV)-mediated Atp6i RNA interference (RNAi) knockdown of Atp6i/TIRC7 gene expression to simultaneously target periapical bone resorption and periapical inflammation. We found that Atp6i inhibition impaired osteoclast function in vitro and in vivo and decreased the number of T cells in the periapical lesion. Notably, AAV-mediated Atp6i/TIRC7 knockdown gene therapy reduced bacterial infection-stimulated bone resorption by 80% in the mouse model of endodontic disease. Importantly, Atp6i(+/-) mice with haploinsufficiency of Atp6i exhibited protection similar to that in mice with bacterial infection-stimulated bone erosion and periapical inflammation, which confirms the potential therapeutic effect of AAV-small hairpin RNA (shRNA)-Atp6i/TIRC7. Our results demonstrate that AAV-mediated Atp6i/TIRC7 knockdown in periapical tissues can inhibit endodontic disease development, bone resorption, and inflammation, indicating for the first time that this potential gene therapy may significantly improve the health of those who suffer from endodontic disease.


Assuntos
Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Inativação Gênica , Pulpite/patologia , Pulpite/prevenção & controle , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Infecções Bacterianas/patologia , Infecções Bacterianas/prevenção & controle , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Periodontite Periapical/patologia , Periodontite Periapical/prevenção & controle , Interferência de RNA , Linfócitos T/imunologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
10.
J Oral Biosci ; 65(1): 132-135, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587735

RESUMO

Apical periodontitis is an inflammatory disease involving lesions located within the jawbone. Histological evaluations generally require decalcification and sectioning, which has limited our understanding of the three-dimensional (3D) organization and spatial distribution of different immune cell types in these lesions. A recently developed technique combining tissue clearing and whole-mount immunofluorescent labeling allows us to acquire such information from the deep tissue without sectioning. However, whole-mount immunofluorescent labeling in the jawbone requires further development. Here we provide a straightforward and efficient protocol to achieve 3D immunofluorescent imaging of murine periapical lesions.


Assuntos
Imageamento Tridimensional , Periodontite Periapical , Camundongos , Animais , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Coloração e Rotulagem , Corantes
11.
Dent Mater ; 39(4): 333-349, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894414

RESUMO

OBJECTIVES: The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS: An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS: We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE: Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.


Assuntos
Materiais Biocompatíveis , Polpa Dentária , Polpa Dentária/metabolismo , Engenharia Tecidual , Tratamento do Canal Radicular , Regeneração/fisiologia
12.
Biomater Adv ; 150: 213427, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37075551

RESUMO

Currently employed approaches and materials used for vital pulp therapies (VPTs) and regenerative endodontic procedures (REPs) lack the efficacy to predictably achieve successful outcomes due to their inability to achieve adequate disinfection and/or lack of desired immune modulatory effects. Natural polymers and medicinal herbs are biocompatible, biodegradable, and present several therapeutic benefits and immune-modulatory properties; thus, standing out as a clinically viable approach capable of establishing a conducive environment devoid of bacteria and inflammation to support continued root development, dentinal bridge formation, and dental pulp tissue regeneration. However, the low stability and poor mechanical properties of the natural compounds have limited their application as potential biomaterials for endodontic procedures. In this study, Aloe vera (AV), as a natural antimicrobial and anti-inflammatory agent, was incorporated into photocrosslinkable Gelatin methacrylate (GelMA) nanofibers with the purpose of developing a highly biocompatible biomaterial capable of eradicating endodontic infection and modulating inflammation. Stable GelMA/AV nanofibers with optimal properties were obtained at the ratio of (70:30) by electrospinning. In addition to the pronounced antibacterial effect against Enterococcus faecalis, the GelMA/AV (70:30) nanofibers also exhibited a sustained antibacterial activity over 14 days and significant biofilm reduction with minimal cytotoxicity, as well as anti-inflammatory properties and immunomodulatory effects favoring healing. Our results indicate that the novel GelMA/AV (70:30) nanofibers hold great potential as a biomaterial strategy for endodontic infection eradication and enhanced healing.


Assuntos
Aloe , Nanofibras , Gelatina/farmacologia , Desinfecção , Nanofibras/uso terapêutico , Antibacterianos , Materiais Biocompatíveis
13.
Gels ; 9(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998987

RESUMO

Keeping sodium hypochlorite (NaOCl) within the root canal is challenging in regenerative endodontics. In this study, we developed a drug delivery system using a gelatin methacryloyl (GelMA) hydrogel incorporated with aluminosilicate clay nanotubes (HNTs) loaded with NaOCl. Pure GelMA, pure HNTs, and NaOCl-loaded HNTs carrying varying concentrations were assessed for chemo-mechanical properties, degradability, swelling capacity, cytocompatibility, antimicrobial and antibiofilm activities, and in vivo for inflammatory response and degradation. SEM images revealed consistent pore sizes of 70-80 µm for all samples, irrespective of the HNT and NaOCl concentration, while HNT-loaded hydrogels exhibited rougher surfaces. The hydrogel's compressive modulus remained between 100 and 200 kPa, with no significant variations. All hydrogels demonstrated a 6-7-fold mass increase and complete degradation by the seventh day. Despite an initial decrease in cell viability, all groups recovered to 65-80% compared to the control. Regarding antibacterial and antibiofilm properties, 12.5 HNT(Double) showed the highest inhibition zone on agar plates and the most significant reduction in biofilm compared to other groups. In vivo, the 12.5 HNT(Double) group displayed partial degradation after 21 days, with mild localized inflammatory responses but no tissue necrosis. In conclusion, the HNT-NaOCl-loaded GelMA hydrogel retains the disinfectant properties, providing a safer option for endodontic procedures without harmful potential.

14.
Immunology ; 129(1): 105-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19824920

RESUMO

Endodontic infections are polymicrobial infections resulting in bone destruction and tooth loss. The host response to these infections is complex, including both innate and adaptive mechanisms. Osteopontin (OPN), a secreted, integrin-binding protein, functions in the regulation of immune responses and enhancement of leucocyte migration. We have assessed the role of OPN in the host response to endodontic infection using a well-characterized mouse model. Periapical bone loss associated with endodontic infection was significantly more severe in OPN-deficient mice compared with wild-type 3 weeks after infection, and was associated with increased areas of inflammation. Expression of cytokines associated with bone loss, interleukin-1alpha (IL-1alpha) and RANKL, was increased 3 days after infection. There was little effect of OPN deficiency on the adaptive immune response to these infections, as there was no effect of genotype on the ratio of bacteria-specific immunoglobulin G1 and G2a in the serum of infected mice. Furthermore, there was no difference in the expression of cytokines associated with T helper type 1/type2 balance: IL-12, IL-10 and interferon-gamma. In infected tissues, neutrophil infiltration into the lesion area was slightly increased in OPN-deficient animals 3 days after infection: this was confirmed by a significant increase in expression of neutrophil elastase in OPN-deficient samples at this time-point. We conclude that OPN has a protective effect on polymicrobial infection, at least partially because of alterations in phagocyte recruitment and/or persistence at the sites of infection, and that this molecule has a potential therapeutic role in polymicrobial infections.


Assuntos
Infecções Bacterianas/imunologia , Elastase de Leucócito/biossíntese , Osteopontina/metabolismo , Perda do Osso Alveolar/genética , Animais , Infecções Bacterianas/sangue , Infecções Bacterianas/genética , Infecções Bacterianas/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunidade , Imunoglobulinas/sangue , Elastase de Leucócito/genética , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/imunologia , Periodontite Periapical/genética , Pulpite , Ligante RANK/biossíntese , Ligante RANK/genética
15.
J Endod ; 46(11): 1648-1654, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763436

RESUMO

INTRODUCTION: The purpose of the present study was to compare the immunomodulatory effect of azithromycin (AZM), ampicillin (AMP), amoxicillin (AMX), and clindamycin (CLI) in vitro and AZM on preexisting periapical lesions compared with AMP. METHODS: The susceptibility of 4 common human endodontic pathogens (Parvimonas micra, Streptococcus intermedius, Prevotella intermedia, and Fusobacterium nucleatum) to AZM, AMP, AMX, and CLI was confirmed by agar disk diffusion assay. Preexisting periapical lesions in C57BL/6J mice were treated with AZM, AMP, or phosphate-buffered saline (PBS). Periapical bone healing and the pattern of inflammatory cell infiltration were evaluated after a 10-day treatment by micro-computed tomographic and histology, respectively. Besides, the effect of antibiotics in pathogen-stimulated nuclear factor kappa B activation and the production of interleukin 1 alpha and tumor necrosis factor alpha was assessed in vitro by luciferase assay and enzyme-linked immunosorbent assay. RESULTS: All examined endodontic pathogens were susceptible to AZM, AMP, AMX, and CLI. AZM significantly attenuated periapical bone loss versus PBS. PBS resulted in widely diffused infiltration of mixed inflammatory cells. By contrast, AZM brought about localized infiltration of neutrophils and M2 macrophages and advanced fibrosis. Although the effect of AMP on bone was uncertain, inflammatory cell infiltration was considerably milder than PBS. However, most macrophages observed seemed to be M1 macrophages. AZM suppressed pathogen-stimulated nuclear factor kappa B activation and cytokine production, whereas AMP, AMX, and CLI reduced only cytokine production moderately. CONCLUSIONS: This study showed that AZM led to the resolution of preexisting experimental periapical inflammation. Our data provide a perspective on host response in antibiotic selection for endodontic treatment. However, well-designed clinical trials are necessary to better elucidate the benefits of AZM as an adjunctive therapy for endodontic treatment when antibiotic therapy is recommended. Although both AZM and AMP were effective on preexisting periapical lesions, AZM led to advanced wound healing, probably depending on its immunomodulatory effect.


Assuntos
Antibacterianos , Azitromicina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Firmicutes , Imunomodulação , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
16.
J Endod ; 45(2): 181-188, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711175

RESUMO

INTRODUCTION: In general, mice develop chronic and nonhealing periapical lesions after endodontic infection. Surprisingly, we recently found that toll-like receptor 2 (TLR2)/interleukin 10 (IL-10) double-knockout (dKO) mice exhibited acute but resolving osteomyelitislike inflammation. In this study, we examined the kinetics of endodontic infection-induced inflammation in TLR2/IL-10 dKO mice and explored a potential mechanism of periapical wound healing mediated by the hypoxia-inducible factor 1 alpha (HIF-1α) subunit and arginase 1. METHODS: TLR2/IL-10 dKO and wild-type C57BL/6J mice were subjected to endodontic infection in the mandibular first molars. Mice were sacrificed on days 0 (noninfected), 10, and 21 postinfection. The extent of bone destruction, inflammation, bone deposition, and gene expression were determined by micro-computed tomographic imaging, histology, bone polychrome labeling, and microarray analysis. In addition, the effect of blocking endogenous HIF-1α was tested in infected TLR2/IL-10 dKO mice using the specific inhibitor YC-1. RESULTS: Infected TLR2/IL-10 dKO mice exhibited extensive bone destruction and inflammation on day 10 followed by spontaneous periapical wound healing including bone formation and resolution of inflammation by day 21 postinfection. In contrast, WT mice developed increasing chronic periapical inflammation over the 21-day observation period. Gene expression analyses and immunohistochemistry revealed that HIF-1α and arginase 1 were up-regulated in spontaneous wound healing in TLR2/IL-10 dKO mice. Blocking of HIF-1α in TLR2/IL-10 dKO mice using YC-1 resulted in significant inhibition of regenerative bone formation. CONCLUSIONS: The TLR2/IL-10 dKO mouse is a novel model resembling osteomyelitis of the jaws in which HIF-1α and arginase 1 appear to be crucial factors in spontaneous wound healing and bone repair.


Assuntos
Modelos Animais de Doenças , Interleucina-10 , Arcada Osseodentária , Osteomielite , Pulpite , Receptor 2 Toll-Like , Animais , Arginase , Regeneração Óssea , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pulpite/genética , Pulpite/fisiopatologia , Cicatrização
17.
Microbes Infect ; 10(6): 664-72, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18457976

RESUMO

In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study, we characterized the protein encoded by the PG_1841 gene and evaluated its relevance in the bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen.


Assuntos
Proteínas de Bactérias/toxicidade , Reabsorção Óssea/induzido quimicamente , Infecções por Bactérias Gram-Negativas/imunologia , Porphyromonas gingivalis/química , Células Th1/efeitos dos fármacos , Animais , Antígenos de Bactérias/imunologia , Reabsorção Óssea/imunologia , Infecções por Bactérias Gram-Negativas/fisiopatologia , Camundongos , Porphyromonas gingivalis/patogenicidade , Células Th1/imunologia , Células Th2/imunologia
18.
Int J Oral Sci ; 10(2): 12, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654284

RESUMO

Hypoxia (low oxygen level) is an important feature during infections and affects the host defence mechanisms. The host has evolved specific responses to address hypoxia, which are strongly dependent on the activation of hypoxia-inducible factor 1 (HIF-1). Hypoxia interferes degradation of HIF-1 alpha subunit (HIF-1α), leading to stabilisation of HIF-1α, heterodimerization with HIF-1 beta subunit (HIF-1ß) and subsequent activation of HIF-1 pathway. Apical periodontitis (periapical lesion) is a consequence of endodontic infection and ultimately results in destruction of tooth-supporting tissue, including alveolar bone. Thus far, the role of HIF-1 in periapical lesions has not been systematically examined. In the present study, we determined the role of HIF-1 in a well-characterised mouse periapical lesion model using two HIF-1α-activating strategies, dimethyloxalylglycine (DMOG) and adenovirus-induced constitutively active HIF-1α (CA-HIF1A). Both DMOG and CA-HIF1A attenuated periapical inflammation and tissue destruction. The attenuation in vivo was associated with downregulation of nuclear factor-κappa B (NF-κB) and osteoclastic gene expressions. These two agents also suppressed NF-κB activation and subsequent production of proinflammatory cytokines by macrophages. Furthermore, activation of HIF-1α by DMOG specifically suppressed lipopolysaccharide-stimulated macrophage differentiation into M1 cells, increasing the ratio of M2 macrophages against M1 cells. Taken together, our data indicated that activation of HIF-1 plays a protective role in the development of apical periodontitis via downregulation of NF-κB, proinflammatory cytokines, M1 macrophages and osteoclastogenesis.


Assuntos
Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Periodontite Periapical/metabolismo , Periodontite Periapical/prevenção & controle , Aminoácidos Dicarboxílicos/farmacologia , Animais , Citocinas/metabolismo , Regulação para Baixo , Expressão Gênica/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , NF-kappa B/metabolismo , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
19.
Braz Oral Res ; 30(1): e78, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27737351

RESUMO

The aim of this study was to compare potential aspects of periapical lesion formation in hypertensive and normotensive conditions using hypertensive (BPH/2J) and wild-type control (BPN/3J) mice. The mandibular first molars of both strains had their dental pulp exposed. At day 21 the mice were euthanized and right mandibular molars were used to evaluate the size and phenotype of apical periodontitis by microCT. Proteins were extracted from periapical lesion on the left side and the expressions of IL1α, IL1ß and TNFα were analyzed by ELISA. Bone marrow stem cells were isolated from adult mice femurs from 2 strains and osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase (TRAP) in vitro. The amount of differentiated osteoclastic cells was nearly double in hypertensive mice when compared to the normotensive strain (p < 0.03). Periapical lesion size did not differ between hypertensive and normotensive strains (p > 0.7). IL1α, IL1ß and TNFα cytokines expressions were similar for both systemic conditions (p > 0.05). Despite the fact that no differences could be observed in periapical lesion size and cytokines expressions on the systemic conditions tested, hypertension showed an elevated number of osteoclast differentiation.


Assuntos
Células da Medula Óssea/patologia , Hipertensão/patologia , Doenças Periapicais/patologia , Ligante RANK/análise , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Hipertensão/complicações , Interleucina-1alfa/análise , Interleucina-1beta/análise , Masculino , Camundongos , Doenças Periapicais/etiologia , Valores de Referência , Fosfatase Ácida Resistente a Tartarato , Fatores de Tempo , Fator de Necrose Tumoral alfa/análise , Microtomografia por Raio-X
20.
Curr Pharm Des ; 22(15): 2204-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881444

RESUMO

BACKGROUND: Periapical periodontitis, also known as periapical lesion, is a common dental disease, along with periodontitis (gum disease). Periapical periodontitis is a chronic inflammatory disease, caused by endodontic infection, and its development is regulated by the host immune/inflammatory response. Metabolic disorders, which are largely dependent on life style such as eating habits, have been interpreted as a "metabolically-triggered" low-grade systemic inflammation and may interact with periapical periodontitis by triggering immune modulation. The host immune system is therefore considered the common fundamental mechanism of both disease conditions. METHOD: We have reviewed >200 articles to discuss the interrelationship between periapical lesions and metabolic disorders including type 2 diabetes mellitus, hypertension, and non-alcoholic fatty liver diseases (NAFLD), and their common pathological background in immunology/osteoimmunology and cytokine biology. RESULTS: An elevated inflammatory state caused by metabolic disorders can impact the clinical outcome of periapical lesions and interfere with wound healing after endodontic treatment. Although additional well-designed clinical studies are needed, periapical lesions appear to affect insulin sensitivity and exacerbate non-alcoholic steatohepatitis. CONCLUSION: Immune regulatory cytokines produced by various cell types, including immune cells and adipose tissue, play an important role in this interrelationship.


Assuntos
Doenças Metabólicas/metabolismo , Periodontite Periapical/metabolismo , Citocinas/biossíntese , Humanos , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA