Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(23): 13711-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25369427

RESUMO

The toxicity, bioaccumulation, and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that AgNP-citrate and AgNP-PVP did not exhibit toxicity to the amphipod (Ampelisca abdita) and mysid (Americamysis bahia) at ≤75 mg/kg dry wt. A 28-d bioaccumulation study showed that Ag was significantly accumulated in the marine polychaete Nereis virens (N. virens) in the AgNP-citrate, AgNP-PVP and a conventional salt (AgNO3) treatments. Synchrotron X-ray absorption spectroscopy (XAS) results showed the distribution of Ag species in marine sediments amended with AgNP-citrate, AgNP-PVP, and AgNO3 was AgCl (50­65%) > Ag2S (32­42%) > Ag metal (Ag0) (3­11%). In N virens, AgCl (25­59%) and Ag2S (10­31%) generally decreased and, Ag metal (32­44%) increased, relative to the sediments. The patterns of speciation in the worm were different depending upon the coating of the AgNP and both types of AgNPs were different than the AgNO3 salt. These results show that the AgNP surface capping agents influenced Ag uptake, biotransformation, and/or excretion. To our knowledge, this is the first demonstration of the bioaccumulation and speciation of AgNPs in a marine organism (N. virens).


Assuntos
Organismos Aquáticos , Nanopartículas Metálicas/toxicidade , Prata/farmacocinética , Prata/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/farmacocinética , Anfípodes/metabolismo , Animais , Biotransformação , Ácido Cítrico/química , Ácido Cítrico/farmacocinética , Crustáceos/metabolismo , Meio Ambiente , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poliquetos/metabolismo , Povidona/química , Povidona/farmacocinética , Prata/química , Espectrometria por Raios X/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Espectroscopia por Absorção de Raios X
2.
Chemosphere ; 173: 245-252, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28110014

RESUMO

Dental unit water lines (DUWL) are susceptible to biofilm development and bacterial growth leading to water contamination, causing health and ecological effects. This study monitors the interactions between a commonly used nanosilver disinfectant (ASAP-AGX-32, an antimicrobial cleaner for dental units, 0.0032% Ag) and biofilm development in DUWL. To simulate the disinfection scenario, an in-house DUWL model was assembled and biofilm accumulation was allowed. Subsequent to biofilm development, the disinfection process was performed according to the manufacturer's instructions. The pristine nanosilver particles in the cleaner measured between 3 and 5 nm in diameter and were surrounded by a stabilizing polymer. However, the polymeric stabilizing agent diminished over the disinfection process, initiating partial AgNPs aggregation. Furthermore, surface speciation of the pristine AgNPs were identified as primarily AgO, and after the disinfection process, transformations to AgCl were observed. The physicochemical characteristics of AgNPs are known to govern their fate, transport and environmental implications. Hence, knowledge of the AgNPs characteristics after the disinfection process (usage scenario) is of significance. This study demonstrates the adsorption of AgNPs onto biofilm surfaces and, therefore, will assist in illustration of the toxicity mechanisms of AgNPs to bacteria and biofilms. This work can be an initial step in better understanding how AgNPs transform depending on the conditions they are exposed to during their lifetime. Until this date, most research has been focused on assessing the impacts of pristine (lab synthesized) nanomaterials on various systems. However, it is our belief that nanoparticles may undergo transformations during usage, which must be taken into consideration. Furthermore, this experiment is unique as it was conducted with a commonly used, commercially available nanosilver suspension leading to more realistic and applicable findings.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Desinfetantes/farmacologia , Desinfecção/métodos , Nanopartículas Metálicas/química , Prata/química
3.
Sci Total Environ ; 557-558: 363-8, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016684

RESUMO

The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag(+) under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5mgL(-1), the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100mgL(-1) as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag(+). Both citrate and PVP-AgNPs did not exhibit toxicity at the 100mgL(-1) as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles.


Assuntos
Anaerobiose/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Bactérias Anaeróbias , Ácido Cítrico , Tamanho da Partícula , Povidona/química , Propriedades de Superfície , Testes de Toxicidade
4.
Sci Total Environ ; 447: 90-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376520

RESUMO

The significant rise in consumer products and applications utilizing the antibacterial properties of silver nanoparticles (AgNPs) has increased the possibility of human exposure. The mobility and bioavailability of AgNPs through the ingestion pathway will depend, in part, on properties such as particle size and the surface chemistries that will influence their physical and chemical reactivities during transit through the gastrointestinal tract. This study investigates the interactions between synthetic stomach fluid and AgNPs of different sizes and with different capping agents. Changes in morphology, size and chemical composition were determined during a 30 min exposure to synthetic human stomach fluid (SSF) using Absorbance Spectroscopy, High Resolution Transmission Electron and Scanning Electron Microscopy (TEM/SEM), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA). AgNPs exposed to SSF were found to aggregate significantly and also released ionic silver which physically associated with the particle aggregates as silver chloride. Generally, the smaller sized AgNPs (<10nm) showed higher rates of aggregation and physical transformation than larger particles (75 nm). Polyvinylpyrrolidone (pvp)-stabilized AgNPs prepared in house behaved differently in SSF than particles obtained from a commercial source despite having similar surface coating and size distribution characteristics.


Assuntos
Suco Gástrico/química , Nanopartículas Metálicas/química , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Povidona/química , Compostos de Prata/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
5.
Environ Pollut ; 159(10): 2320-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21616569

RESUMO

We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil Pb. Feeding tests have shown that urban soils may have much lower Pb bioavailability than previously assumed. Hence bioavailability of soil Pb is the important measure for protection of public health, not total soil Pb. Chemical extraction tests (Pb bioaccessibility) have been developed which are well correlated with the results of bioavailability tests; application of these tests can save money and time compared with feeding tests. Recent findings have revealed that fractional bioaccessibility (bioaccessible compared to total) of Pb in urban soils is only 5-10% of total soil Pb, far lower than the 60% as bioavailable as food-Pb presumed by U.S.-EPA (30% absolute bioavailability used in IEUBK model).


Assuntos
Exposição Ambiental/análise , Chumbo/análise , Poluentes do Solo/análise , Exposição Ambiental/estatística & dados numéricos , Poluição Ambiental/estatística & dados numéricos , Humanos , Chumbo/metabolismo , Modelos Biológicos , Boca/metabolismo , Saúde Pública , Medição de Risco , Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA