Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Stem Cells ; 35(1): 61-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27273755

RESUMO

Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Sistema Nervoso Central/patologia , Polpa Dentária/citologia , Retina/patologia , Células-Tronco/citologia , Cicatrização , Animais , Humanos
2.
Cytotherapy ; 18(4): 487-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26897559

RESUMO

BACKGROUND AIMS: Glaucoma is a leading cause of irreversible blindness involving loss of retinal ganglion cells (RGC). Mesenchymal stromal cells (MSC) have shown promise as a paracrine-mediated therapy for compromised neurons. It is, however, unknown whether dental pulp stem cells (DPSC) are effective as a cellular therapy in glaucoma and how their hypothesized influence compares with other more widely researched MSC sources. The present study aimed to compare the efficacy of adipose-derived stem cells, bone marrow-derived MSC (BMSC) and DPSC in preventing the loss of RGC and visual function when transplanted into the vitreous of glaucomatous rodent eyes. METHODS: Thirty-five days after raised intraocular pressure (IOP) and intravitreal stem cell transplantation, Brn3a(+) RGC numbers, retinal nerve fibre layer thickness (RNFL) and RGC function were evaluated by immunohistochemistry, optical coherence tomography and electroretinography, respectively. RESULTS: Control glaucomatous eyes that were sham-treated with heat-killed DPSC had a significant loss of RGC numbers, RNFL thickness and function compared with intact eyes. BMSC and, to a greater extent, DPSC provided significant protection from RGC loss and RNFL thinning and preserved RGC function. DISCUSSION: The study supports the use of DPSC as a neuroprotective cellular therapy in retinal degenerative disease such as glaucoma.


Assuntos
Glaucoma/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Neuroproteção/fisiologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Retina/patologia , Retina/fisiopatologia , Tomografia de Coerência Óptica
3.
Dent Mater ; 40(8): 1252-1258, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876829

RESUMO

OBJECTIVES: Quality control testing of dental materials requires a standard to enable the generation of reproducible and comparable data. Currently there are no standards for testing materials used for vital pulp therapy. The aim of this study was to develop a new standard to evaluate solubility of pulp preservation materials. METHODS: The solubility of three materials used for vital pulp therapy: Biodentine, TheraCal and Activa was evaluated using two international standards for dental materials ISO 4049:2019 (S1) and ISO 6876:2012 (S2). For both standards, a modified methodology was evaluated. This included changing the volume of the solution used (S1M, S2M), using Dulbecco's modified eagle medium (DMEM) as an alternative to water (S1D, S2D) and periodic solution change for the ISO 4049 method (S1P, S1MP). Materials were characterised before and after completion of solubility test using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. RESULTS: The test materials exhibited different solubility values depending on the methodology used. Biodentine exhibited significantly lower solubility when lower volumes of solution were used when tested using both ISO methods (p ≤ 0.05). TheraCal and Activa showed negative solubility values after desiccation when tested using ISO 4049:2019. The Biodentine exhibited changes in its microstructure which was dependent on the method used to test solubility. CONCLUSIONS: The solubility values obtained were dependent on the method used. It is thus important to use methods that replicate the clinical environment for meaningful evaluations.


Assuntos
Compostos de Cálcio , Teste de Materiais , Microscopia Eletrônica de Varredura , Silicatos , Solubilidade , Difração de Raios X , Silicatos/química , Compostos de Cálcio/química , Materiais Dentários/química , Compostos de Alumínio/química , Agentes de Capeamento da Polpa Dentária e Pulpectomia/química , Óxidos/química , Combinação de Medicamentos
4.
PLoS One ; 17(11): e0277134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331951

RESUMO

Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins ßIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.


Assuntos
Acetilcolinesterase , Neuroblastoma , Humanos , Acetilcolinesterase/metabolismo , Polpa Dentária/metabolismo , Neuroblastoma/metabolismo , Diferenciação Celular , Tretinoína/farmacologia , Células-Tronco , Colinérgicos , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
5.
Neural Regen Res ; 16(9): 1821-1828, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33510089

RESUMO

Dental pulp stem cells (DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium (DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor (NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2 (MAP-2) and cytoskeletal marker ßIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and ßIII-tubulin were analysed by quantitative polymerase chain reaction (qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors (NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and ßIII-tubulin immunostaining. Furthermore, DPSCs-CM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls; however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed.

6.
Sci Rep ; 10(1): 19694, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184395

RESUMO

Evidence indicates that dental pulp stem cells (DPSC) secrete neurotrophic factors which play an important role in neurogenesis, neural maintenance and repair. In this study we investigated the trophic potential of DPSC-derived conditioned medium (CM) to protect and regenerate isolated primary trigeminal ganglion neuronal cells (TGNC). DPSC and TGNC were harvested by enzymatic digestion from Wister-Hann rats. CM was collected from 72 h serum-free DPSC cultures and neurotrophic factors; nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were analysed by specific enzyme-linked immunosorbent assays (ELISAs). Primary co-cultures of DPSC and TGNC were established to evaluate the paracrine effects of DPSC. In comparison, NGF was used to evaluate its neurotrophic and neuritogenic effect on TGNC. Immunocytochemistry was performed to detect the neuronal-markers; neuronal nuclei (NeuN), microtubule-associated protein-2 (MAP-2) and ßIII-tubulin. Quantitative real time polymerase chain reaction (qRT-PCR) was used to analyse neuronal-associated gene expression of NeuN, MAP-2, ßIII-tubulin in addition to growth-associated protein-43 (GAP-43), Synapsin-I and thermo-sensitive transient receptor potential vanilloid channel-1 (TRPV1). DPSC-CM contained significant levels of NGF, BDNF, NT-3 and GDNF. DPSC and DPSC-CM significantly enhanced TGNC survival with extensive neurite outgrowth and branching as evaluated by immunocytochemistry of neuronal markers. DPSC-CM was more effective in stimulating TGNC survival than co-cultures or NGF treated culture. In comparison to controls, DPSC-CM significantly upregulated gene expression of several neuronal markers as well as TRPV1. This study demonstrated that DPSC-derived factors promoted survival and regeneration of isolated TGNC and may be considered as cell-free therapy for TG nerve repair.


Assuntos
Técnicas de Cocultura/métodos , Polpa Dentária/citologia , Fatores de Crescimento Neural/metabolismo , Gânglio Trigeminal/citologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Polpa Dentária/metabolismo , Masculino , Neurogênese , Cultura Primária de Células , Ratos , Células-Tronco/citologia
7.
Front Physiol ; 9: 1685, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534086

RESUMO

Dental pulp is known to be an accessible and important source of multipotent mesenchymal progenitor cells termed dental pulp stem cells (DPSCs). DPSCs can differentiate into odontoblast-like cells and maintain pulp homeostasis by the formation of new dentin which protects the underlying pulp. DPSCs similar to other mesenchymal stem cells (MSCs) reside in a niche, a complex microenvironment consisting of an extracellular matrix, other local cell types and biochemical stimuli that influence the decision between stem cell (SC) self-renewal and differentiation. In addition to biochemical factors, mechanical factors are increasingly recognized as key regulators in DPSC behavior and function. Thus, microenvironments can significantly influence the role and differentiation of DPSCs through a combination of factors which are biochemical, biomechanical and biophysical in nature. Under in vitro conditions, it has been shown that DPSCs are sensitive to different types of force, such as uniaxial mechanical stretch, cyclic tensile strain, pulsating fluid flow, low-intensity pulsed ultrasound as well as being responsive to biomechanical cues presented in the form of micro- and nano-scale surface topographies. To understand how DPSCs sense and respond to the mechanics of their microenvironments, it is essential to determine how these cells convert mechanical and physical stimuli into function, including lineage specification. This review therefore covers some aspects of DPSC mechanoresponsivity with an emphasis on the factors that influence their behavior. An in-depth understanding of the physical environment that influence DPSC fate is necessary to improve the outcome of their therapeutic application for tissue regeneration.

8.
Ultrasound Med Biol ; 33(9): 1475-82, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17531373

RESUMO

In this study, the effects of low frequency ultrasound (US) were examined on odontoblasts, the primary cell responsible for dentinogenesis and dentine repair. An established odontoblast-like cell line, MDPC-23, was subjected to 30 kHz ultrasound at three different power settings. US induced a marginal level of cell death (3% to 4%) at lower amplitudes rising to 25% cell death at the highest power tested. The latter was reflected in a 30% decrease in cell attachment after 4 to 24 h of culture, while the number of adherent cells was reduced by approximately 10% to 15% in the lower power groups. Cell replication after 24 h, as measured by BrdU incorporation, showed no significant changes in the US-treated groups. Gene expression analyses demonstrated a moderate dose-dependent increase in the expression of GAPDH (glyseraldehyde-3-phosphate dehydrogenase)-normalised collagen type I, osteopontin (OPN), transforming growth factor-beta1 (TGFbeta1) and the heat shock protein (hsp) 70. The greatest change was found in the expression of the small hsp 25/27, which showed a two- to six-fold increase following US treatment. No significant effects were observed for alkaline phosphatase (ALP) and core-binding factor A1 (CBFA1/Runx2) expression levels. This is the first report describing US effects on odontoblasts. Further studies are warranted to elucidate US effects on odontoblast function and to evaluate US as a therapeutic application in dentine repair.


Assuntos
Odontoblastos/fisiologia , Ultrassom , Animais , Biomarcadores/análise , Adesão Celular/fisiologia , Morte Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Colágeno Tipo I/genética , Expressão Gênica , Proteínas de Choque Térmico/genética , Camundongos , Osteopontina/genética , Fator de Crescimento Transformador beta1/genética
10.
J Endod ; 43(7): 1130-1136, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527849

RESUMO

INTRODUCTION: Piezo1 and Piezo2 are mechanosensitive membrane ion channels. We hypothesized that Piezo proteins may play a role in transducing ultrasound-associated mechanical signals and activate downstream mitogen-activated protein kinase (MAPK) signaling processes in dental cells. In this study, the expression and role of Piezo channels were investigated in dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) after treatment with low-intensity pulsed ultrasound (LIPUS). METHODS: Cell proliferation was evaluated by bromodeoxyuridine incorporation. Western blots were used to analyze the proliferating cell nuclear antigen as well as the transcription factors c-fos and c-jun. Enzyme-linked immunosorbent assay and Western blotting were used to determine the activation of MAPK after LIPUS treatment. Ruthenium red (RR), a Piezo ion channel blocker, was applied to determine the functional role of Piezo proteins in LIPUS-stimulated cell proliferation and MAPK signaling. RESULTS: Western blotting showed the presence of Piezo1 and Piezo2 in both dental cell types. LIPUS treatment significantly increased the level of the Piezo proteins in DPSCs after 24 hours; however, no significant effects were observed in PDLSCs. Treatment with RR significantly inhibited LIPUS-stimulated DPSC proliferation but not PDLSC proliferation. Extracellular signal-related kinase (ERK) 1/2 MAPK was consistently activated in DPSCs over a 24-hour time period after LIPUS exposure, whereas phosphorylated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase MAPK were mainly increased in PDLSCs. RR affected MAPK signaling in both dental cell types with its most prominent effects on ERK1/2/MAPK phosphorylation levels; the significant inhibition of LIPUS-induced stimulation of ERK1/2 activation in DPSCs by RR suggests that stimulation of DPSC proliferation by LIPUS involves Piezo-mediated regulation of ERK1/2 MAPK signaling. CONCLUSIONS: This study for the first time supports the role of Piezo ion channels in transducing the LIPUS response in dental stem cells.


Assuntos
Polpa Dentária/efeitos da radiação , Canais Iônicos/metabolismo , Células-Tronco/efeitos da radiação , Ondas Ultrassônicas , Animais , Western Blotting , Proliferação de Células , Polpa Dentária/citologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Ratos , Ratos Wistar
11.
J Endod ; 42(3): 425-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26830427

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSCs) from dental tissues may respond to low-intensity pulsed ultrasound (LIPUS) treatment, potentially providing a therapeutic approach to promoting dental tissue regeneration. This work aimed to compare LIPUS effects on the proliferation and MAPK signaling in MSCs from rodent dental pulp stem cells (DPSCs) compared with MSCs from periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). METHODS: Isolated MSCs were treated with 1-MHz LIPUS at an intensity of 250 or 750 mW/cm2 for 5 or 20 minutes. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) staining after 24 hours of culture following a single LIPUS treatment. Specific ELISAs were used to determine the total and activated p38, ERK1/2, and JNK MAPK signaling proteins up to 4 hours after treatment. Selective MAPK inhibitors PD98059 (ERK1/2), SB203580 (p38), and SP600125 (JNK) were used to determine the role of activation of the particular MAPK pathways. RESULTS: The proliferation of all MSC types was significantly increased after LIPUS treatment. LIPUS at a 750-mW/cm2 dose induced the greatest effects on DPSCs. BMSC proliferation was stimulated in equal measures by both intensities, whereas 250 mW/cm2 LIPUS exposure exerted maximum effects on PDLSCs. ERK1/2 was activated immediately in DPSCs after treatment. Concomitantly, DPSC proliferation was specifically modulated by ERK1/2 inhibition, whereas p38 and JNK inhibition exerted no effects. In BMSCs, JNK MAPK signaling was LIPUS activated, and the increase in proliferation was blocked by specific inhibition of the JNK pathway. In PDLSCs, JNK MAPK signaling was activated immediately after LIPUS, whereas p-p38 MAPK increased significantly in these cells 4 hours after exposure. Correspondingly, JNK and p38 inhibition modulated LIPUS-stimulated PDLSC proliferation. CONCLUSIONS: LIPUS promoted MSC proliferation in an intensity and cell-specific dependent manner via activation of distinct MAPK pathways.


Assuntos
Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco/enzimologia , Células-Tronco/efeitos da radiação , Terapia por Ultrassom/métodos , Animais , Sequência de Bases , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/efeitos da radiação , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Ratos , Ratos Wistar , Regeneração/efeitos da radiação , Ondas Ultrassônicas
12.
J Ther Ultrasound ; 3: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146556

RESUMO

BACKGROUND: Ultrasound with frequencies in the kilohertz range has been demonstrated to promote biological effects and has been suggested as a non-invasive tool for tissue healing and repair. However, many challenges exist to characterize and develop kilohertz ultrasound for therapy. In particular there is a limited evidence-based guidance and standard procedure in the literature concerning the methodology of exposing biological cells to ultrasound in vitro. METHODS: This study characterized a 45-kHz low-frequency ultrasound at three different preset intensity levels (10, 25, and 75 mW/cm(2)) and compared this with the thermal and biological effects seen in a 6-well culture setup using murine odontoblast-like cells (MDPC-23). Ultrasound was produced from a commercially available ultrasound-therapy system, and measurements were recorded using a needle hydrophone in a water tank. The transducer was displaced horizontally and vertically from the hydrophone to plot the lateral spread of ultrasound energy. Calculations were performed using Fourier transform and average intensity plotted against distance from the transducer. During ultrasound treatment, cell cultures were directly exposed to ultrasound by submerging the ultrasound transducer into the culture media. Four groups of cell culture samples were treated with ultrasound. Three with ultrasound at an intensity level of 10, 25, and 75 mW/cm(2), respectively, and the final group underwent a sham treatment with no ultrasound. Cell proliferation and viability were analyzed from each group 8 days after three ultrasound treatments, each separated by 48 h. RESULTS: The ultrasonic output demonstrated considerable lateral spread of the ultrasound field from the exposed well toward the adjacent culture wells in the multiwell culture plate; this correlated well with the dose-dependent increase in the number of cultured cells where significant biological effects were also seen in adjacent untreated wells. Significant thermal variations were not detected in adjacent untreated wells. CONCLUSIONS: This study highlights the pitfalls of using multiwell plates when investigating the biological effect of kilohertz low-frequency ultrasound on adherent cell cultures.

13.
Stem Cell Res ; 14(3): 243-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752437

RESUMO

Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Oftalmopatias/terapia , Transplante de Células-Tronco , Polpa Dentária/citologia , Células-Tronco Embrionárias/transplante , Oftalmopatias/patologia , Rejeição de Enxerto , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Neurais/transplante , Regeneração/imunologia , Retina/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Células-Tronco/imunologia
14.
PLoS One ; 9(10): e109305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290916

RESUMO

We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair.


Assuntos
Polpa Dentária/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neuritos/fisiologia , Neuroproteção , Comunicação Parácrina/fisiologia , Células Ganglionares da Retina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Axotomia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Técnicas de Cocultura , Polpa Dentária/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Fator de Crescimento Neural/biossíntese , Fator de Crescimento Neural/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Ther Ultrasound ; 1: 5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24761226

RESUMO

BACKGROUND: The development of ultrasound for use in dental tissues is hampered by the complex, multilayered nature of the teeth. The purpose of this preliminary study was to obtain the phase and group velocities associated with several directions of ultrasonic wave propagation in relation to the tooth structure, which would then lead to the determination of the elastic constants in dental hard tissue. Knowledge of these elastic constants can be used to feed back into numerical models (such as finite element) in order to simulate/predict ultrasonic wave propagation and behavior in the teeth. This will help to optimize ultrasonic protocols as potential noninvasive therapeutic tools for novel dental regenerative therapies. METHODS: An extracted human second molar was used to determine time-of-flight information from A-scan signatures obtained at various angles of inclination and rotation using a scanning acoustic microscope at 10 MHz. Phase and group velocities and associated slowness curves were calculated in order to determine the independent elastic constants in the human teeth. RESULTS: Results show that as the tooth was inclined at three azimuthal angles (Θin = 0°, 15°, and 30°) and rotated from Φin = 0° to 360° in order to cover the whole perimeter of the tooth, slowness curves constructed from the computed phase and group velocities versus angle of rotation confirm the inhomogeneous and anisotropic nature of the tooth as indicated by the nonuniform appearance of uneven circular shape patterns of the measurements when compared to those produced in a control isotropic fused quartz sample. CONCLUSIONS: This study demonstrates that phase and group velocities of ultrasound as determined by acoustic microscopy change and are dependent on the direction of the tooth structure. Thus, these results confirm that the tooth is indeed a multilayered anisotropic structure underscoring that there is no single elastic constant sufficient to represent the complex structure of the tooth. The findings underline the importance to take into account these crucial characteristics in order to develop and optimize therapeutic as well as diagnostic applications of ultrasound in dental tissue repair, and further studies are warranted to analyze ultrasound transmission at various frequencies and intensities in different teeth to develop appropriate models for ultrasound biophysical behavior in dental tissues.

16.
J Ther Ultrasound ; 1: 12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25516801

RESUMO

BACKGROUND: Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. METHODS: In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent 'sham treatment' where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm(2) for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on µ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz-1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective for cell proliferation during tooth repair. RESULTS: The results demonstrate that odontoblast MDPC-23 cell numbers were significantly increased following three consecutive ultrasound treatments over a 7-day culture period as compared with sham controls underscoring the anabolic effects of ultrasound on these cells. Data show a distinct increase in cell number compared to the sham data after ultrasound treatment for intensities of 10 and 25 mW/cm(2) (p < 0.05 and p < 0.01, respectively). Using finite element analysis, we demonstrated that ultrasound does indeed propagate through the mineralized layers of the teeth and into the pulp chamber where it forms a 'therapeutic' force field to interact with the living dental pulp cells. This allowed us to observe the pressure/intensity of the wave as it propagates throughout the tooth. A selection of time-dependent snapshots of the pressure/intensity reveal that the lower frequency waves propagate to the pulp and remain within the chamber for a while, which is ideal for cell excitation. Input frequencies and pressures of 30 kHz (70 Pa) and 45 kHz (31 kPa), respectively, with an average SPTA of up to 120 mW/cm(2) in the pulp seem to be optimal and agree with the SATA intensities reported experimentally. CONCLUSIONS: Our data suggest that ultrasound can be harnessed to propagate to the dental pulp region where it can interact with the living cells to promote dentine repair. Further research is required to analyze the precise physical and biological interactions of low-frequency ultrasound with the dental pulp to develop a novel non-invasive tool for dental tissue regeneration.

17.
Invest Ophthalmol Vis Sci ; 54(12): 7544-56, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24150755

RESUMO

PURPOSE: To investigate the potential therapeutic benefit of intravitreally implanted dental pulp stem cells (DPSCs) on axotomized adult rat retinal ganglion cells (RGCs) using in vitro and in vivo neural injury models. METHODS: Conditioned media collected from cultured rat DPSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were assayed for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) secretion using ELISA. DPSCs or BMSCs were cocultured with retinal cells, with or without Fc-TrK inhibitors, in a Transwell system, and the number of surviving ßIII-tubulin⁺ retinal cells and length/number of ßIII-tubulin⁺ neurites were quantified. For the in vivo study, DPSCs or BMSCs were transplanted into the vitreous body of the eye after a surgically induced optic nerve crush injury. At 7, 14, and 21 days postlesion (dpl), optical coherence tomography (OCT) was used to measure the retinal nerve fiber layer thickness as a measure of axonal atrophy. At 21 dpl, numbers of Brn-3a⁺ RGCs in parasagittal retinal sections and growth-associated protein-43⁺ axons in longitudinal optic nerve sections were quantified as measures of RGC survival and axon regeneration, respectively. RESULTS: Both DPSCs and BMSCs secreted NGF, BDNF, and NT-3, with DPSCs secreting significantly higher titers of NGF and BDNF than BMSCs. DPSCs, and to a lesser extent BMSCs, promoted statistically significant survival and neuritogenesis/axogenesis of ßIII-tubulin⁺ retinal cells in vitro and in vivo where the effects were abolished after TrK receptor blockade. CONCLUSIONS: Intravitreal transplants of DPSCs promoted significant neurotrophin-mediated RGC survival and axon regeneration after optic nerve injury.


Assuntos
Axônios/fisiologia , Polpa Dentária/citologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/prevenção & controle , Células Ganglionares da Retina/fisiologia , Transplante de Células-Tronco , Corpo Vítreo/cirurgia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas de Cocultura , Polpa Dentária/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/fisiologia , Tomografia de Coerência Óptica
18.
J Endod ; 38(5): 608-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22515888

RESUMO

INTRODUCTION: Ultrasound is a potential therapeutic tool for dental tissue repair, but its biological effects on odontoblasts have not been well characterized. In this study, the effects of low-intensity low-frequency ultrasound on the viability, proliferation, and differentiation of odontoblast-like cells were investigated. METHODS: Cell viability and proliferation were assessed after the treatment of adherent clonal MDPC-23 odontoblast-like cells with a 25-mW/cm(2) 45-kHz ultrasound. An in vitro scratch wound healing assay was used to investigate the ultrasound effects on cell migration. Long-term cultures were used to study odontogenic differentiation and extracellular mineralization. RESULTS: Ultrasound exposure for up to 30 minutes did not significantly affect odontoblast-like cell viability but significantly increased cell numbers after 2 days in culture. Ultrasound did not influence the scratch wound closure rate in the absence or presence of the mitogen inhibitor mitomycin C, indicating that ultrasound did not influence cellular migration. Single and consecutive exposures to ultrasound resulted in the enhancement of in vitro mineralization after 14 days in culture with an osteogenic differentiation medium. This coincided with the up-regulation of gene expression of collagen type I, osteoadherin, dentine matrix protein 1, and osteocalcin as well as the expression of cell markers alkaline phosphatase and nestin. CONCLUSIONS: These findings indicate that low-frequency ultrasound is able to influence proliferation and differentiation of odontoblast-like cells and may potentially be considered as a therapeutic tool for dental pulp and dentine repair.


Assuntos
Odontoblastos/fisiologia , Ultrassom/métodos , Fosfatase Alcalina/análise , Calcificação Fisiológica/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colágeno Tipo I/análise , Meios de Cultura , Proteínas da Matriz Extracelular/análise , Humanos , Proteínas de Filamentos Intermediários/análise , Mitomicina/farmacologia , Proteínas do Tecido Nervoso/análise , Nestina , Inibidores da Síntese de Ácido Nucleico/farmacologia , Odontoblastos/efeitos dos fármacos , Osteocalcina/análise , Fosfoproteínas/análise , Proteoglicanas/análise , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA