Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Macromol Rapid Commun ; 43(12): e2200052, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35320608

RESUMO

Functional, hierarchically mesostructured nonwovens are of fundamental importance because complex fiber morphologies increase the active surface area and functionality allowing for the effective immobilization of metal nanoparticles. Such complex functional fiber morphologies clearly widen the property profile and enable the preparation of more efficient and selective filter media. Here, the realization of hierarchically mesostructured nonwovens with barbed wire-like morphology is demonstrated by combining electrospun polystyrene fibers, decorated with patchy worm-like micelles, with solution-processed supramolecular short fibers composed of 1,3,5-benzenetricarboxamides with peripheral N,N-diisopropylaminoethyl substituents. The worm-like micelles with a patchy microphase-separated corona are prepared by crystallization-driven self-assembly of a polyethylene based triblock terpolymer and deposited on top of the polystyrene fibers by coaxial electrospinning. The micelles are designed in a way that their patches promote the directed self-assembly of the 1,3,5-benzenetricarboxamide and the fixation of the supramolecular nanofibers on the supporting polystyrene fibers. Functionality of the mesostructured nonwoven is provided by the peripheral N,N-diisopropylaminoethyl substituents of the 1,3,5-benzenetricarboxamide and proven by the effective immobilization of individual palladium nanoparticles on the supramolecular nanofibers. The preparation of hierarchically mesostructured nonwovens and their shown functionality demonstrate that such systems are attractive candidates to be used for example in filtration, selective separation and heterogenous catalysis.


Assuntos
Nanopartículas Metálicas , Nanofibras , Micelas , Paládio , Polímeros , Poliestirenos
2.
Macromol Rapid Commun ; 41(8): e2000069, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32167639

RESUMO

In nature, animals such as chameleons are well-known for the complex color patterns of their skin and the ability to adapt and change the color by manipulating sophisticated photonic crystal systems. Artificial gradient photonic materials are inspired by these color patterns. A concept for the preparation of such materials and their function as tunable mechanochromic materials is presented in this work. The system consists of a 1D polymer photonic crystal on a centimeter scale on top of an elastic poly(dimethylsiloxane) substrate with a gradient in stiffness. In the unstrained state, this system reveals a uniform red reflectance over the entire sample. Upon deformation, a gradient in local strain of the substrate is formed and transferred to the photonic crystal. Depending on the magnitude of this local strain, the thickness of the photonic crystal decreases continuously, resulting in a position-dependent blue shift of the reflectance peak and hence the color in a rainbow-like fashion. Using more sophisticated hard-soft-hard-soft-hard gradient elastomers enables the realization of stripe-like reflectance patterns. Thus, this approach allows for the tunable formation of reflectance gradients and complex reflectance patterns. Envisioned applications are in the field of mechanochromic sensors, telemedicine, smart materials, and metamaterials.


Assuntos
Dimetilpolisiloxanos/química , Fótons , Cristalização , Teste de Materiais
3.
Macromol Rapid Commun ; 39(10): e1800055, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29656556

RESUMO

Melt electrowriting (MEW), an additive manufacturing process, is established using polycaprolactone as the benchmark material. In this study, a thermoplastic elastomer, namely, poly(urea-siloxane), is synthesized and characterized to identify how different classes of polymers are compatible with MEW. This polyaddition polymer has reversible hydrogen bonding from the melt upon heating/cooling and highly resolved structures are achieved by MEW. The influence of applied voltage, temperature, and feeding pressure on printing outcomes behavior is optimized. Balancing these parameters, highly uniform and smooth-surfaced fibers with diameters ranging from 10 to 20 µm result. The quality of the 3D MEW scaffolds is excellent, with very accurate fiber stacking capacity-up to 50 layers with minimal defects and good fiber fusion between the layers. There is also minimal fiber sagging between the crossover points, which is a characteristic of thicker MEW scaffolds previously reported with other polymers. In summary, poly(urea-siloxane) demonstrates outstanding compatibility with the MEW process and represents a class of polymer-thermoplastic elastomers-that are, until now, untested with this approach.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Poliésteres/química , Polímeros/química , Engenharia Tecidual/métodos , Impressão Tridimensional
4.
Macromol Rapid Commun ; 36(6): 520-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598273

RESUMO

In view of the increasing significance of technology-driven devices such as microelectromechanical systems, energy-harvesting devices, and organic field effect transistors, polymer electret materials with durable electret performance at elevated temperatures become more and more important. However, typical polymer electret materials lose their performance at elevated temperatures. To provide polymer materials with improved electret performance over a broad temperature range, a series of aromatic polyimides with different degree of fluorosubstitution is presented. Isothermal surface potential decay measurements at elevated temperatures reveal that minor differences in the chemical structure have a major influence on the electret behavior. The best performance is found for the polyimide containing a hexafluoroisopropylidene moiety in both the bisanhydride- and the diamine-based unit. Excellent long-term charge storage stability at 120 °C is observed. From the initial surface charge 94% remains after 24 h. This polyimide even tolerates short-term exposure of 30 s at 300 °C with almost no loss of performance. These findings demonstrate that this particular polyimide is suitable for device applications at elevated temperatures during fabrication and use.


Assuntos
Flúor/química , Imidas/química , Polímeros/química , Imãs/química , Polímeros/síntese química
5.
Molecules ; 18(4): 4120-39, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23567361

RESUMO

In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.


Assuntos
Técnicas de Química Combinatória/métodos , Compostos Orgânicos , Técnicas de Química Combinatória/instrumentação , Eletrônica , Membranas Artificiais , Soluções/química , Temperatura
6.
Macromol Rapid Commun ; 33(3): 206-11, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22183983

RESUMO

Marine mussels use their threads for attachment to any substratum and these biopolymer gradient fibers show an excellent combination of stiff and soft mechanical properties. A straightforward approach for the preparation of macroscopic longitudinal polymer gradient materials on the centimeter scale based on a poly(dimethyl siloxane) system is presented. Compositional gradients are realized by using three syringe pumps feeding different prepolymers capable to undergo thermal cross-linking. Within the gradient samples, the stiffness between the hard and soft part can be varied up to a factor of four. The gradients are analyzed by UV-Vis spectroscopy as well as compressive and tensile modulus testing.


Assuntos
Bivalves/química , Elastômeros/química , Siloxanas/química , Animais , Biopolímeros/química , Microscopia Ultravioleta , Relação Estrutura-Atividade , Resistência à Tração
7.
J Am Chem Soc ; 132(2): 509-16, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20017555

RESUMO

We present a series of small-molecular trisazobenzene chromophores, including, for instance, 1,3,5-tris{[4-[4-[(4-cyanophenyl)azo]phenoxy]butyryl]amino}benzene that feature a remarkably stable light-induced orientation in initially amorphous thin-film architectures. It is demonstrated that for optimal performance it is critical to design chemical structures that allow formation of both an amorphous and a liquid-crystalline phase. In the present approach, the liquid-crystalline feature was introduced by inserting decoupling spacers between a trisfunctionalized benzene core and the three azobenzene moieties, as well as adding polar end groups to the latter. To compensate for the deleterious reduction of the glass transition temperature associated with the spacers in the compounds, polar units were incorporated between the benzene core and the side groups. Intriguingly, the molecular glasses that feature a latent liquid-crystalline phase display a remarkable "postdevelopment", i.e., an increase of the amplitude of refractive index modulation in holographic experiments after writing of optical gratings is arrested, exceeding 20% for the previously mentioned derivative. Thus, these nonpolymeric, azobenzene-containing compounds presented in this work appear to be attractive candidates for fabrication of stable holographic volume gratings.


Assuntos
Compostos Azo/química , Compostos Azo/síntese química , Membranas Artificiais , Estrutura Molecular , Peso Molecular , Temperatura , Fatores de Tempo
8.
Rev Sci Instrum ; 78(7): 072216, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17672747

RESUMO

In this article we present a setup for the combinatorial vapor deposition of thin-film multilayer devices as well as methods for the fast and efficient analytic screening of the libraries obtained. The preparation setup is based on a commercially available evaporation chamber equipped with various evaporation sources for both organic and metallic materials. The combinatorial approach is realized by the combination of a rotation stage for the substrate, a five-mask sampler, and an additional mask whose position can be deliberately varied along one axis during the evaporation process. The latter is used to evaporate linear as well as step gradients by continuous or stepwise movement of a shutter mask. The mask sampler allows to define the sectors of the library and to evaporate more complex structures, e.g., an electrode layout. Finally, the simultaneous evaporation of two or more materials enables us to produce layers of varying composition ratio in general and doped materials, in particular. For the control of the evaporation process we have developed an automation software, which is particularly helpful for complex library designs and which grants excellent repeatability of experiments. Efficient and fast characterization of the obtained libraries is realized by (i) a purely optical setup and (ii) an electro-optical setup. (i) The UV/vis reader FLASHScan 530 permits to map out the UV/vis absorbance or fluorescence of the whole library. The UV/vis absorbance is primarily used to determine layer thicknesses and to confirm thickness uniformity across larger regions. The fluorescence measurements are used to determine the composition of layers containing fluorescent dyes. (ii) For a detailed short- and long-term electro-optical analysis we have developed an automated measurement system, which allows the characterization of 8x8 optoelectronic devices and to study their degradation behavior. Both solar cells and organic light-emitting diodes can be tested. Finally, we have developed a data analysis software to extract characteristic values from the huge amount of data and with this facilitate the finding of systematic dependencies.


Assuntos
Técnicas de Química Combinatória/instrumentação , Cristalização/instrumentação , Eletrônica/instrumentação , Análise de Falha de Equipamento/instrumentação , Teste de Materiais/instrumentação , Membranas Artificiais , Microeletrodos , Óptica e Fotônica/instrumentação , Técnicas de Química Combinatória/métodos , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Teste de Materiais/métodos , Dispositivos Ópticos
9.
Adv Mater ; 28(13): 2624-8, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26822954

RESUMO

A novel nanoimprint lithography technique based on the photofluidization effect of azobenzene materials is presented. The tunable process allows for imprinting under ambient conditions without crosslinking reactions, so that shrinkage of the resist is avoided. Patterning of surfaces in the regime from micrometers down to 100 nm is demonstrated.


Assuntos
Compostos Azo/química , Nanotecnologia , Dimetilpolisiloxanos/química , Isomerismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Raios Ultravioleta
10.
J Med Chem ; 45(23): 5023-9, 2002 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12408712

RESUMO

Lipid-mediated delivery of DNA into cells holds great promise both for gene therapy and basic research applications. This paper describes the efficient and facile synthesis and the characterization of a new multivalent cationic lipid with a double-branched headgroup structure for gene delivery applications. The synthetic scheme can be extended to give cationic lipids of different charge, spacer, or lipid chain length. The chemical and physical properties of self-assembled complexes of the cationic liposomes (CLs) with DNA give indications of why multivalent cationic lipids possess superior transfection properties. The lipid bears a headgroup with five charges in the fully protonated state, which is attached to an unsaturated double-chain hydrophobic moiety based on 3,4-dihydroxybenzoic acid. Liposomes consisting of the new multivalent lipid and the neutral lipid 1,2-dioleoyl-sn-glycerophosphatidylcholine (DOPC) were used to prepare complexes with DNA. Investigations of the structures of these complexes by optical microscopy and small-angle X-ray scattering reveal a lamellar L(alpha)(C) phase of CL-DNA complexes with the DNA molecules sandwiched between bilayers of the lipids. Experiments using plasmid DNA containing the firefly luciferase reporter gene show that these complexes efficiently transfect mammalian cells. When compared to the monovalent cationic lipid 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP), the higher charge density of the membranes of CL-DNA complexes achievable with the new multivalent lipid greatly increases transfection efficiency in the regime of small molar ratios of cationic to neutral lipid. This is desired to minimize the known toxicity effects of cationic lipids.


Assuntos
Benzamidas/síntese química , DNA/química , Espermina/síntese química , Animais , Benzamidas/química , Cátions , Besouros , DNA/administração & dosagem , DNA/genética , Ácidos Graxos Monoinsaturados/química , Genes Reporter , Células L , Lipossomos , Luciferases/genética , Camundongos , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Espalhamento de Radiação , Espermina/análogos & derivados , Espermina/química , Transfecção , Raios X
11.
Macromol Biosci ; 13(10): 1396-403, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23894133

RESUMO

Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications.


Assuntos
Bivalves/química , Fibroínas/química , Gelatina/química , Polímeros/síntese química , Animais , Materiais Biocompatíveis/química , Bivalves/fisiologia , Polímeros/química , Proteínas/química
12.
Adv Mater ; 24(44): 5939-44, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22961836

RESUMO

Star block copolymers are demonstrated for their application as a high-performance resist material. This new resist material shows advanced progress in sensitivity and solubility contrast and is finally combinatorially optimized to achieve a 66 nm line/space pattern. The tailored molecular architecture of the star block copolymer is synthesized via core-first atom transfer radical polymerization (ATRP) and shows narrow polydispersity indices below 1.2.


Assuntos
Polímeros/química , Teste de Materiais , Solubilidade
13.
Nano Lett ; 8(7): 1954-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18507449

RESUMO

Ordered nanofiber arrays are a promising material platform for artificial adhesive structures, tissue engineering, wound dressing, sensor arrays, and self-cleaning surfaces. Their production via self-ordered porous alumina hard templates serving as shape-defining molds is well-established. However, their release requires the destruction of the hard templates, the fabrication of which is costly and time-consuming, by wet-chemical etching steps with acids or bases. We report the nondestructive mechanical extraction of arrays of cross-linked polyacrylate nanofibers from thus recyclable self-ordered nanoporous alumina hard templates. Silica replicas of the latter were synthesized using the extricated nanofiber arrays as secondary molds that could be mechanically detached from the molded material. The approach reported here, which can be combined with microstructuring, may pave the way for the high-throughput production of both functional nanofiber arrays and ordered nanoporous membranes consisting of a broad range of material systems.


Assuntos
Resinas Acrílicas/química , Óxido de Alumínio/química , Reagentes de Ligações Cruzadas/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Microscopia Eletrônica de Varredura , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA