Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biomed Eng Online ; 22(1): 84, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641065

RESUMO

BACKGROUND: The challenges in developing new bone replacement materials and procedures reside not solely in technological innovation and advancement, but also in a broader patient therapy acceptance. Therefore, there is a need to assess patients' perspectives on the materials and approaches in use as well as the ones being developed to better steer future progress in the field. METHODS: A self-initiating cross-sectional questionnaire aimed at people seeking treatment at the university hospital environment of Charité Berlin was formulated. The survey contained 15 close-ended questions directed toward the participant's epidemiological profile, willingness, acceptance, and agreement to receive different bone replacement materials, as well as, worries about the post-surgical consequences that can arise post bone replacement surgery. Descriptive and categorical analysis was performed to compare the observed number of subjects, their profile and each related response (Pearson's chi-square test or Fischer's test, p < 0.05). RESULTS: A total of 198 people engaged with the questionnaire, most of them Millennials. Overall patients trusted scientifically developed biomaterials designed for bone replacement, as demonstrated by their willingness to participate in a clinical trial, their acceptance of alloplastic materials, and the none/few worries about the presence of permanent implants. The data revealed the preferences of patients towards autologous sources of cells and blood to be used with a biomaterial. The data have also shown that both generation and education influenced willingness to participate in a clinical trial and acceptance of alloplastic materials, as well as, worries about the presence of permanent implants and agreement to receive a material with pooled blood and cells. CONCLUSION: Patients were open to the implantation of biomaterials for bone replacement, with a preference toward autologous sources of blood and/or tissue. Moreover, patients are concerned about strategies based on permanent implants, which indicates a need for resorbable materials. The knowledge gained in this study supports the development of new bone biomaterials.


Assuntos
Substitutos Ósseos , Humanos , Estudos Transversais , Materiais Biocompatíveis , Hospitais
2.
Knee Surg Sports Traumatol Arthrosc ; 27(11): 3575-3582, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30879107

RESUMO

PURPOSE: The treatment of osteochondral defects in joint cartilage remains challenging due to its limited repair capacity. This study presents a metallic osteochondral plug with hydroxyapatite (HA)-coated cap edges for improved implant-tissue contact. The hypothesis was that improved attachment prevents from synovial fluid-influx and thereby avoids osteolysis and resulting implant instability. METHODS: In total, 24 female, adult sheep were randomized into three groups. All animals received an Episealer®-implant in the medial condyle of the right knee. The implants were coated with two different HA versions or uncoated (control group). After 12 weeks, the implant-tissue connections were analysed radiologically and histologically. RESULTS: In general, the groups with the coated cap edges showed a better quality of tissue connection to the implant. The occurrence of gaps between tissue and implant was more seldom, the binding of calcified and hyaline cartilage to the cap was significantly better than in the uncoated group. A histomorphometrically measured lower amount of void space in these groups compared to the group with the uncoated edges confirmed that. CONCLUSIONS: The hypothesis of a tighter cartilage bone contact was confirmed. The HA coating of the implant's cap edges resulted in better adherence of cartilage to the implant, which was not previously reported. In conclusion, this led to a better contact between implant and cartilage as well as neighbouring bone. In clinical routine, joint fluid is aggressive, penetrates through cartilage rifts, and promotes osteolysis and loosening of implants. The observed sealing effect will act to prevent joint fluid to get access to the implant-tissue interfaces. Joint fluid is aggressive, can cause osteolysis, and can, clinically cause pain. These effects are liable to decrease with these findings and will further the longevity of these osteochondral implants.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Materiais Revestidos Biocompatíveis , Durapatita , Próteses e Implantes , Desenho de Prótese , Animais , Interface Osso-Implante , Feminino , Cartilagem Hialina , Metais , Osteólise/prevenção & controle , Falha de Prótese , Distribuição Aleatória , Ovinos
3.
BMC Musculoskelet Disord ; 17: 111, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932531

RESUMO

BACKGROUND: New tissue engineering strategies for bone regeneration need to be investigated in a relevant preclinical large animal model before making the translation into human patients. Therefore, our interdisciplinary group established a simplified large animal screening model for intramembranous bone defect regeneration in cancellous and cortical bone. METHODS: Related to a well-established model of cancellous drill hole defect regeneration in sheep, both the proximal and distal epimetaphyseal regions of the femur and the humerus were used bilaterally for eight drill hole cancellous defects (Ø 6 mm, 15 mm depth). Several improvements of the surgical procedure and equipment for an easier harvest of samples were invented. For the inclusion of cortical defect regeneration, a total of eight unicortical diaphyseal drill holes (6 mm Ø) were placed in the proximal-lateral and distal-medial parts of the metacarpal (MC) and metatarsal (MT) diaphyseal bone bilaterally. Acting moments within a normal gait cycle in the musculoskeletal lower limb model were compared with the results of the biomechanical in vitro torsion test until failure to ensure a low accidental fracture risk of utilized bones (ANOVA, p < 0.05). The model was tested in vivo, using thirteen adult, female, black-face sheep (Ø 66 kg; ± 5 kg; age ≥ 2.5 years). In a two-step surgical procedure 16 drill holes were performed for the investigation of two different time points within one animal. Defects were left empty, augmented with autologous cancellous bone or soft bone graft substitutes. RESULTS: The in vitro tests confirmed this model a high comparability between drilled MC and MT bones and a high safety margin until fracture. The exclusion of one animal from the in vivo study, due to a spiral fracture of the left MC bone led to a tolerable failure rate of 8 %. CONCLUSIONS: As a screening tool, promising biomaterials can be tested in this cancellous and cortical bone defect model prior to the application in a more complex treatment site.


Assuntos
Doenças Ósseas/cirurgia , Transplante Ósseo/métodos , Modelos Animais de Doenças , Engenharia Tecidual/métodos , Animais , Doenças Ósseas/patologia , Regeneração Óssea/fisiologia , Substitutos Ósseos/administração & dosagem , Feminino , Fêmur/patologia , Fêmur/cirurgia , Úmero/patologia , Úmero/cirurgia , Ossos Metacarpais/patologia , Ossos Metacarpais/cirurgia , Ossos do Metatarso/patologia , Ossos do Metatarso/cirurgia , Ovinos
4.
ACS Biomater Sci Eng ; 10(8): 4901-4915, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072479

RESUMO

Titanium plates are the current gold standard for fracture fixation of the mandible. Magnesium alloys such as WE43 are suitable biodegradable alternatives due to their high biocompatibility and elasticity modulus close to those of cortical bone. By surface modification, the reagibility of magnesium and thus hydrogen gas accumulation per time are further reduced, bringing plate fixation with magnesium closer to clinical application. This study aimed to compare bone healing in a monocortical mandibular fracture model in sheep with a human-standard size, magnesium-based, plasma electrolytic-oxidation (PEO) surface modified miniplate fixation system following 4 and 12 weeks. Bone healing was analyzed using micro-computed tomography and histological analysis with Movat's pentachrome and Giemsa staining. For evaluation of the tissue's osteogenic activity, polychrome fluorescent labeling was performed, and vascularization was analyzed using immunohistochemical staining for alpha-smooth muscle actin. Bone density and bone mineralization did not differ significantly between titanium and magnesium (BV/TV: T1: 8.74 ± 2.30%, M1: 6.83 ± 2.89%, p = 0.589 and T2: 71.99 ± 3.13%, M2: 68.58 ± 3.74%, p = 0.394; MinB: T1: 26.16 ± 9.21%, M1: 22.15 ± 7.99%, p = 0.818 and T2: 77.56 ± 3.61%, M2: 79.06 ± 4.46%, p = 0.699). After 12 weeks, minor differences were observed regarding bone microstructure, osteogenic activity, and vascularization. There was significance with regard to bone microstructure (TrTh: T2: 0.08 ± 0.01 mm, M2: 0.06 ± 0.01 mm; p = 0.041). Nevertheless, these differences did not interfere with bone healing. In this study, adequate bone healing was observed in both groups. Only after 12 weeks were some differences detected with larger trabecular spacing and more vessel density in magnesium vs titanium plates. However, a longer observational time with full resorption of the implants should be targeted in future investigations.


Assuntos
Placas Ósseas , Magnésio , Mandíbula , Titânio , Animais , Magnésio/farmacologia , Titânio/química , Titânio/farmacologia , Ovinos , Mandíbula/cirurgia , Mandíbula/diagnóstico por imagem , Consolidação da Fratura/efeitos dos fármacos , Propriedades de Superfície , Osteogênese/efeitos dos fármacos , Fraturas Mandibulares/cirurgia , Fraturas Mandibulares/diagnóstico por imagem , Microtomografia por Raio-X , Ligas/química
5.
Front Physiol ; 14: 1152301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008011

RESUMO

The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps. However, the mandible is a craniofacial bone with unique characteristics. Its morphogenesis, morphology, physiology, biomechanics, genetic profile, and osteoimmune environment are different from any other non-craniofacial bone. This fact is especially important to consider during mandibular reconstruction, as all these differences result in unique clinical traits of the mandible that can impact the results of jaw reconstructions. Furthermore, overall changes in the mandible and the flap post-reconstruction may be dissimilar, and the replacement process of the bone graft tissue during healing can take years, which in some cases can result in postsurgical complications. Therefore, the present review highlights the uniqueness of the jaw and how this factor can influence the outcome of its reconstruction while using an exemplary clinical case of pseudoarthrosis in a free vascularized fibula flap.

6.
Biomater Adv ; 151: 213423, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37167748

RESUMO

In nature, tissues are patterned, but most biomaterials used in human applications are not. Patterned biomaterials offer the opportunity to mimic spatially segregating biophysical and biochemical properties found in nature. Engineering such properties allows to study cell-matrix interactions in anisotropic matrices in great detail. Here, we developed alginate-based hydrogels with patterns in stiffness and degradation, composed of distinct areas of soft non-degradable (Soft-NoDeg) and stiff degradable (Stiff-Deg) material properties. The hydrogels exhibit emerging patterns in stiffness and degradability over time, taking advantage of dual crosslinking: Diels-Alder covalent crosslinking (norbornene-tetrazine, non degradable) and UV-mediated peptide crosslinking (matrix metalloprotease sensitive peptide, enzymatically degradable). The materials were mechanically characterized using rheology for single-phase and surface micro-indentation for patterned materials. 3D encapsulated mouse embryonic fibroblasts (MEFs) allowed to characterize the anisotropic cell-matrix interaction in terms of cell morphology by employing a novel image-based quantification tool. Live/dead staining showed no differences in cell viability but distinct patterns in proliferation, with higher cell number in Stiff-Deg materials at day 14. Patterns of projected cell area became visible already at day 1, with larger values in Soft-NoDeg materials. This was inverted at day 14, when larger projected cell areas were identified in Stiff-Deg. This shift was accompanied by a significant decrease in cell circularity in Stiff-Deg. The control of anisotropic cell morphology by the material patterns was also confirmed by a significant increase in filopodia number and length in Stiff-Deg materials. The novel image-based quantification tool was useful to spatially visualize and quantify the anisotropic cell response in 3D hydrogels with stiffness-degradation spatial patterns. Our results show that patterning of stiffness and degradability allows to control cell anisotropic response in 3D and can be quantified by image-based strategies. This allows a deeper understanding of cell-matrix interactions in a multicomponent material.


Assuntos
Fibroblastos , Hidrogéis , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Comunicação Celular , Materiais Biocompatíveis
7.
Acta Biomater ; 157: 720-733, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460289

RESUMO

Bioabsorbable magnesium implants for orthopedic fixation of bone have recently become available for different fields of indication. While general questions of biocompatibility have been answered, tailoring suitable degradation kinetics for specific applications as well as long-term tissue integration remain the focus of current research. The aim of this study was the evaluation of the long-term degradation behavior and osseointegration of Mg-Ca-Zn (ZX00MEO) based magnesium implants with plasma-electrolytic oxidation (PEO) surface modification (ZX00MEO-PEO) in comparison to non-surface modified implants in vivo and in vitro. Besides a general evaluation of the biological performance of the alloy over a prolonged period, the main hypothesis was that PEO surface modification significantly reduces implant degradation rate and improves tissue interaction. In vitro, the microstructure and surface of the bioabsorbable screws were characterized by SEM/EDS, cytocompatibility and degradation testing facilitating hydrogen gas evolution, carried out following ISO 10993-5/-12 and ASTM F3268-18a/ASTM G1-03 (E1:2017). In vivo, screws were implanted in the frontal bone of Minipigs for 6, 12, and 18 months, following radiological and histomorphometric analysis. A slower and more uniform degradation and improved cytocompatibility could be shown for the ZX00MEO-PEO group in vitro. A significant reduction of degradation rate and enhanced bone formation around the ZX00MEO-PEO screws in vivo was confirmed. Proficient biocompatibility and tissue integration could generally be shown in vivo regardless of surface state. The tested magnesium alloy shows generally beneficial properties as an implant material, while PEO-surface modification further improves the bioabsorption behavior both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Devices from bioabsorbable Magnesium have recently been introduced to orthopedic applications. However, the vast degradation of Magnesium within the human body still gives limitations. While reliable in-vivo data on most promising surface treatments such as Plasma-electrolytic-Oxidation is generally scarce, long-time results in large animals are to this date completely missing. To overcome this lack of evidence, we studied a Magnesium-Calzium-Zinc-alloy with surface enhancement by PEO for the first time ever over a period of 18 months in a large animal model. In-vitro, surface-modified screws showed significantly improved cytocompatibility and reduction of degradation confirmed by hydrogen gas evolution testing, while in-vivo radiological and histological evaluation generally showed good biocompatibility and bioabsorption as well as significantly enhanced reduction of degradation and faster bone regeneration in the PEO-surface-modified group.


Assuntos
Magnésio , Próteses e Implantes , Suínos , Animais , Humanos , Porco Miniatura , Magnésio/farmacologia , Magnésio/química , Ligas/farmacologia , Ligas/química , Hidrogênio , Teste de Materiais
8.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614440

RESUMO

In fractures of the mandible, osteosynthesis with titanium plates is considered the gold standard. Titanium is an established and reliable material, its main disadvantages being metal artefacts and the need for removal in case of osteosynthesis complications. Magnesium, as a resorbable material with an elastic modulus close to cortical bone, offers a resorbable alternative osteosynthesis material, yet mechanical studies in mandible fracture fixation are still missing. The hypothesis of this study was that magnesium miniplates show no significant difference in the mechanical integrity provided for fracture fixation in mandible fractures under load-sharing indications. In a non-inferiority test, a continuous load was applied to a sheep mandible fracture model with osteosynthesis using either titanium miniplates of 1.0 mm thickness (Ti1.0), magnesium plates of 1.75 mm (Mg1.75), or magnesium plates of 1.5 mm thickness (Mg1.5). No significant difference (p > 0.05) was found in the peak force at failure, stiffness, or force at vertical displacement of 1.0 mm between Mg1.75, Mg1.5, and Ti1.0. This study shows the non-inferiority of WE43 magnesium miniplates compared to the clinical gold standard titanium miniplates.

9.
Biomater Adv ; 136: 212788, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929320

RESUMO

Bone defects of the craniofacial skeleton are often associated with aesthetic and functional impairment as well as loss of protection to intra- and extracranial structures. Solid titanium plates and individually adapted bone cements have been the materials of choice, but may lead to foreign-body reactions and insufficient osseointegration. In contrast, porous scaffolds are thought to exhibit osteoconductive properties to support bone ingrowth. Here, we analyse in critical size defects of the calvaria in sheep whether different bone replacement materials may overcome those remaining challenges. In a critical size defect model, bilateral 20 × 20 × 5-mm craniectomies were performed on either side of the sagittal sinus in 24 adult female blackheaded sheep. Bony defects were randomised to one of five different bone replacement materials (BRMs): titanium scaffold, biodegradable poly(d,l-lactic acid) calcium carbonate scaffold (PDLLA/CC), polyethylene 1 (0.71 mm mean pore size) or 2 (0.515 mm mean pore size) scaffolds and polymethyl methacrylate (PMMA)-based bone cement block. Empty controls (n = 3) served as references. To evaluate bone growth over time, three different fluorochromes were administered at different time points. At 3, 6 and 12 months after surgery, animals were sacrificed and the BRMs and surrounding bone analysed by micro-CT and histomorphometry. The empty control group verified that the calvaria defect in this study was a reliable critical size defect model. Bone formation in vivo was detectable in all BRMs after 12 months by micro-CT and histomorphometric analysis, except for the non-porous PMMA group. A maximum of bone formation was detected in the 12-months group for titanium and PDLLA/CC. Bone formation in PDLLA/CC starts to increase rapidly between 6 and 12 months, as the BRM resorbs over time. Contact between bone and BRM influenced bone formation inside the BRM. Empty controls exhibited bone formation solely at the periphery. Overall, porous BRMs offered bone integration to different extent over 12 months in the tested calvaria defect model. Titanium and PDLLA/CC scaffolds showed remarkable osseointegration properties by micro-CT and histomorphometric analysis. PDLLA/CC scaffolds degraded over time without major residues. Pore size influenced bone ingrowth in polyethylene, emphasising the importance of porous scaffold structure.


Assuntos
Substitutos Ósseos , Animais , Cimentos Ósseos/química , Substitutos Ósseos/química , Feminino , Polietilenos , Polimetil Metacrilato/química , Ovinos , Crânio/diagnóstico por imagem , Titânio
10.
Mater Sci Eng C Mater Biol Appl ; 129: 112380, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579899

RESUMO

Magnesium is a highly promising candidate with respect to its future use as a material for resorbable implants. When magnesium degrades, hydrogen gas is released. High doses of gas emergence are reported to impair osseointegration and may therefore lead to fixation failure. The successful delay and reduction of the degradation rate by applying plasma electrolytic oxidation (PEO) as a post processing surface modification method for magnesium alloy has recently been demonstrated. The aim of this study was thus to compare the degradation behavior of a WE43-based plate system with and without respective PEO surface modification and to further investigate osseointegration, as well as the resulting effects on the surrounding bony tissue of both variants in a miniature pig model. WE43 magnesium screws and plates without (WE43) and with PEO surface modification (WE43-PEO) were implanted in long bones of Göttingen Miniature Pigs. At six and twelve months after surgery, micro-CT and histomorphometric analysis was performed. Residual screw volume (SV/TV; WE43: 28.8 ± 21.1%; WE43-PEO: 62.9 ± 31.0%; p = 0.027) and bone implant contact area (BIC; WE43: 18.1 ± 21.7%; WE43-PEO: 51.6 ± 27.7%; p = 0.015) were increased after six months among the PEO-modified implants. Also, surrounding bone density within the cortical bone was not affected by surface modification (BVTV; WE43: 76.7 ± 13.1%; WE43-PEO: 73.1 ± 16.2%; p = 0.732). Intramedullar (BV/TV; WE43: 33.2 ± 16.7%; WE43-PEO 18.4 ± 9.0%; p = 0.047) and subperiosteal (bone area; WE43: 2.6 ± 3.4 mm2; WE43-PEO: 6,9 ± 5.2 mm2; p = 0.049) new bone formation was found for both, surface-modified and non-surface-modified groups. After twelve months, no significant differences of SV/TV and BV/TV were found between the two groups. PEO surface modification of WE43 plate systems improved osseointegration and significantly reduced the degradation rate within the first six months in vivo. Osteoconductive and osteogenic stimulation by WE43 magnesium implants led to overall increased bone growth, when prior PEO surface modification was conducted.


Assuntos
Magnésio , Osseointegração , Ligas , Animais , Parafusos Ósseos , Suínos , Porco Miniatura
11.
ACS Appl Mater Interfaces ; 12(13): 14946-14957, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141284

RESUMO

In this work, two types of mesoporous carbon particles with different morphology, size, and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.4 and 5 confirm the pH-responsiveness of the hybrid systems, showing that only small amounts of the cargo are released at physiological pH, whereas at slightly acidic pH (e.g., that of lysosomes), self-immolation takes place and a significant amount of the cargo is released. Cytotoxicity studies using human osteosarcoma cells show that the hybrid nanocarriers are not cytotoxic by themselves but induce significant cell growth inhibition when loaded with a chemotherapeutic drug such as doxorubicin. In preparation of an in vivo application, in vial responsiveness of the hybrid system to short-term pH-triggering is confirmed. The consecutive in vivo study shows no substantial cargo release over a period of 96 h under physiological pH conditions. Short-term exposure to acidic pH releases an experimental fluorescent cargo during and continuously after the triggering period over 72 h.


Assuntos
Carbono/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carbocianinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Polímeros/química , Porosidade , Rutênio/química , Rutênio/metabolismo , Dióxido de Silício/química
12.
J Tissue Eng Regen Med ; 12(4): 897-911, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28485078

RESUMO

Large segmental bone defect reconstruction with sufficient functional restoration is one of the most demanding challenges in orthopaedic surgery. Available regenerative treatment options, as the vascularized bone graft transfer, the Masquelet technique or the Ilizarov distraction osteogenesis, are associated with specific indications and distinct limitations. As an alternative, a hollow cylindrical ceramic-polymer composite scaffold (ß-tricalcium phosphate and poly-lactid co-ε- caprolactone), facilitating a strong surface guiding effect for tissue ingrowth (group 1; n = 6) was investigated here. In combination with an additional autologous, cancellous bone graft filling, the scaffold's ability to work as an open-porous membrane to improve the defect healing process was analysed (group 2; n = 6). A novel model of a critical size (40 mm) tibia osteotomy defect stabilized with an external hybrid-ring fixator, was established in sheep. Segmental defect regeneration and tissue organization in relation to the scaffold were analysed radiologically, (immune-) histologically, and with second-harmonic generation imaging 12 weeks after surgery. The scaffold's tubular shape and open-porous structure controlled the collagen fibre orientation within the bone defect and guided the following mineralization process along the scaffold surface. In combination with the osteoinductive stimulus, a unilateral bony bridging of the critically sized defect was achieved in one third of the animals. The external hybrid-ring fixator was appropriate for large segmental defect stabilization in sheep.


Assuntos
Fosfatos de Cálcio , Técnica de Ilizarov , Osteogênese por Distração , Poliésteres , Tíbia , Alicerces Teciduais/química , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Modelos Animais de Doenças , Feminino , Poliésteres/química , Poliésteres/farmacologia , Porosidade , Ovinos , Tíbia/lesões , Tíbia/metabolismo , Tíbia/patologia
13.
Expert Opin Biol Ther ; 14(2): 247-59, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24397854

RESUMO

INTRODUCTION: Tissue regeneration in itself is a fascinating process that promises repeated renewal of tissue and organs. AREAS COVERED: This article aims to illustrate the different strategies available to control tissue regeneration at a very early stage, using bone as an exemplary tissue. The aspects of a controlled inflammatory cascade to achieve a balanced immune response, cell therapeutic approaches for improved tissue formation and angiogenesis, guiding the organization of newly formed extracellular matrix by biomaterials, the relevance of mechanical signals for tissue regeneration processes, and the chances and limitations of growth factor treatments are discussed. EXPERT OPINION: The currently available knowledge is reviewed and perspectives for potential new targets are given. This is done under the assumption that early identification of risk patients as well as the application of early intervention strategies is possible.


Assuntos
Regeneração Óssea/fisiologia , Regeneração/fisiologia , Animais , Materiais Biocompatíveis/química , Cartilagem/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Homeostase , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Neovascularização Fisiológica , Osteoblastos/citologia , Osteogênese , Engenharia Tecidual/métodos , Cicatrização
14.
Adv Drug Deliv Rev ; 64(12): 1257-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22626978

RESUMO

Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing.


Assuntos
Regeneração Óssea , Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Animais , Materiais Biocompatíveis/química , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA