Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 41(12): 2179-2194, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33131181

RESUMO

Ciliopathies are clinically and genetically heterogeneous diseases. We studied three patients from two independent families presenting with features of Joubert syndrome: abnormal breathing pattern during infancy, developmental delay/intellectual disability, cerebellar ataxia, molar tooth sign on magnetic resonance imaging scans, and polydactyly. We identified biallelic loss-of-function (LOF) variants in CBY1, segregating with the clinical features of Joubert syndrome in the families. CBY1 localizes to the distal end of the mother centriole, contributing to the formation and function of cilia. In accordance with the clinical and mutational findings in the affected individuals, we demonstrated that depletion of Cby1 in zebrafish causes ciliopathy-related phenotypes. Levels of CBY1 transcript were found reduced in the patients compared with controls, suggesting degradation of the mutated transcript through nonsense-mediated messenger RNA decay. Accordingly, we could detect CBY1 protein in fibroblasts from controls, but not from patients by immunofluorescence. Furthermore, we observed reduced ability to ciliate, increased ciliary length, and reduced levels of the ciliary proteins AHI1 and ARL13B in patient fibroblasts. Our data show that CBY1 LOF-variants cause a ciliopathy with features of Joubert syndrome.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Cerebelo/anormalidades , Ciliopatias/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação/genética , Proteínas Nucleares/genética , Retina/anormalidades , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Adolescente , Animais , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Criança , Pré-Escolar , Cílios/metabolismo , Cílios/patologia , Ciliopatias/diagnóstico por imagem , Ciliopatias/patologia , Anormalidades do Olho/diagnóstico por imagem , Anormalidades do Olho/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Homozigoto , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/diagnóstico por imagem , Doenças Renais Císticas/patologia , Imageamento por Ressonância Magnética , Masculino , Linhagem , Fenótipo , Retina/diagnóstico por imagem , Retina/patologia , Receptor Smoothened/metabolismo , Adulto Jovem , Peixe-Zebra/genética
2.
Orphanet J Rare Dis ; 15(1): 36, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007091

RESUMO

BACKGROUND: Sensenbrenner syndrome, which is also known as cranioectodermal dysplasia (CED), is a rare, autosomal recessive ciliary chondrodysplasia characterized by a variety of clinical features including a distinctive craniofacial appearance as well as skeletal, ectodermal, liver and renal anomalies. Progressive renal disease can be life-threatening in this condition. CED is a genetically heterogeneous disorder. Currently, variants in any of six genes (IFT122, WDR35, IFT140, IFT43, IFT52 and WDR19) have been associated with this syndrome. All of these genes encode proteins essential for intraflagellar transport (IFT) a process that is required for cilium assembly, maintenance and function. Intra- and interfamilial clinical variability has been reported in CED, which is consistent with CED's genetic heterogeneity and is indicative of genetic background effects. RESULTS: Two male CED patients from two unrelated Polish families were included in this study. Clinical assessment revealed distinctive clinical features of Sensenbrenner syndrome, such as dolichocephaly, shortening of long bones and early onset renal failure. Ectodermal anomalies also included thin hair, short and thin nails, and small teeth in both patients. Next generation sequencing (NGS) techniques were performed in order to determine the underlying genetic cause of the disorder using whole exome sequencing (WES) for patient 1 and a custom NGS-based panel for patient 2. Subsequent qPCR and duplex PCR analysis were conducted for both patients. Genetic analyses identified compound heterozygous variants in the IFT140 gene in both affected individuals. Both patients harbored a tandem duplication variant p.Tyr1152_Thr1394dup on one allele. In addition, a novel missense variant, p.(Leu109Pro), and a previously described p.(Gly522Glu) variant were identified in the second allele in patients 1 and 2, respectively. Segregation analysis of the variants was consistent with the expected autosomal recessive disease inheritance pattern. Both patients had severe renal failure requiring kidney transplantation in early childhood. CONCLUSION: The finding of compound heterozygous IFT140 mutations in two unrelated CED patients provide further evidence that IFT140 gene mutations are associated with this syndrome. Our studies confirm that IFT140 changes in patients with CED are associated with early onset end-stage renal disease. Moreover, this report expands our knowledge of the clinical- and molecular genetics of Sensenbrenner syndrome and it highlights the importance of multidisciplinary approaches in the care of CED patients.


Assuntos
Craniossinostoses , Displasia Ectodérmica , Falência Renal Crônica , Osso e Ossos/anormalidades , Proteínas de Transporte/genética , Pré-Escolar , Displasia Ectodérmica/genética , Humanos , Falência Renal Crônica/genética , Masculino , Mutação/genética , Polônia
3.
JCI Insight ; 4(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30728324

RESUMO

Odontochondrodysplasia (ODCD) is an unresolved genetic disorder of skeletal and dental development. Here, we show that ODCD is caused by hypomorphic TRIP11 mutations, and we identify ODCD as the nonlethal counterpart to achondrogenesis 1A (ACG1A), the known null phenotype in humans. TRIP11 encodes Golgi-associated microtubule-binding protein 210 (GMAP-210), an essential tether protein of the Golgi apparatus that physically interacts with intraflagellar transport 20 (IFT20), a component of the ciliary intraflagellar transport complex B. This association and extraskeletal disease manifestations in ODCD point to a cilium-dependent pathogenesis. However, our functional studies in patient-derived primary cells clearly support a Golgi-based disease mechanism. In spite of reduced abundance, residual GMAP variants maintain partial Golgi integrity, normal global protein secretion, and subcellular distribution of IFT20 in ODCD. These functions are lost when GMAP-210 is completely abrogated in ACG1A. However, a similar defect in chondrocyte maturation is observed in both disorders, which produces a cellular achondrogenesis phenotype of different severity, ensuing from aberrant glycan processing and impaired extracellular matrix proteoglycan secretion by the Golgi apparatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA