Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 8(1): 84, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503635

RESUMO

BACKGROUND: In a warmer world, microbial decomposition of previously frozen organic carbon (C) is one of the most likely positive climate feedbacks of permafrost regions to the atmosphere. However, mechanistic understanding of microbial mediation on chemically recalcitrant C instability is limited; thus, it is crucial to identify and evaluate active decomposers of chemically recalcitrant C, which is essential for predicting C-cycle feedbacks and their relative strength of influence on climate change. Using stable isotope probing of the active layer of Arctic tundra soils after depleting soil labile C through a 975-day laboratory incubation, the identity of microbial decomposers of lignin and, their responses to warming were revealed. RESULTS: The ß-Proteobacteria genus Burkholderia accounted for 95.1% of total abundance of potential lignin decomposers. Consistently, Burkholderia isolated from our tundra soils could grow with lignin as the sole C source. A 2.2 °C increase of warming considerably increased total abundance and functional capacities of all potential lignin decomposers. In addition to Burkholderia, α-Proteobacteria capable of lignin decomposition (e.g. Bradyrhizobium and Methylobacterium genera) were stimulated by warming by 82-fold. Those community changes collectively doubled the priming effect, i.e., decomposition of existing C after fresh C input to soil. Consequently, warming aggravates soil C instability, as verified by microbially enabled climate-C modeling. CONCLUSIONS: Our findings are alarming, which demonstrate that accelerated C decomposition under warming conditions will make tundra soils a larger biospheric C source than anticipated. Video Abstract.


Assuntos
Lignina , Proteobactérias , Microbiologia do Solo , Alaska , Burkholderia/metabolismo , Mudança Climática , Temperatura Alta , Lignina/metabolismo , Pergelissolo , Proteobactérias/metabolismo , Solo/química , Tundra
2.
Nat Commun ; 11(1): 4897, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994415

RESUMO

Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5-19%, and reduces model parametric uncertainty by 55-71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.


Assuntos
Carbono/análise , Metagenoma/genética , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Aclimatação/genética , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Celulose/metabolismo , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Aquecimento Global , Pradaria , Temperatura Alta/efeitos adversos , Metagenômica , Modelos Genéticos , Raízes de Plantas/química , Poaceae/química
3.
Anal Chem ; 77(22): 7212-24, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16285668

RESUMO

A number of operationally defined methods exist for pretreating plant tissues in order to measure C, N, and O isotopes. Because these isotope measurements are used to infer information about environmental conditions that existed at the time of tissue growth, it is important that these pretreatments remove compounds that may have exchanged isotopes or have been synthesized after the original formation of these tissues. In stable isotope studies, many pretreatment methods focus on isolating "cellulose" from the bulk tissue sample because cellulose does not exchange C and O isotopes after original synthesis. We investigated the efficacy of three commonly applied pretreatment methods, the Brendel method and two variants of the Brendel method, the Jayme-Wise method and successive acid/base/acid washes, for use on three tissue types (wood, leaves, roots). We then compared the effect of each method on C and O isotope composition (13C, 14C, 18O), C and N content, and chemical composition of the residue produced (using 13C nuclear magnetic resonance (NMR)). Our results raised concerns over use of the Brendel method as published, as it both added C and N to the sample and left a residue that contains remnant lipids and waxes. Furthermore, this method resulted in 18O values that are enriched relative to the other methods. Modifying the Brendel method by adding a NaOH step (wash) solved many of these problems. We also found that processed residues vary by tissue type. For wood and root tissues, the 13C NMR spectra and the 18O and 13C data showed only small differences between residues for the Jayme-Wise and modified Brendel methods. However, for leaf tissue, 13C NMR data showed that Jayme-Wise pretreatments produced residues that are more chemically similar to cellulose than the other methods. The acid/base/acid washing method generated 13C NMR spectra with incomplete removal of lignin for all tissues tested and both isotopic, and 13C NMR results confirmed that this method should not be used if purified cellulose is desired.


Assuntos
Celulose/análise , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Isótopos de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA